
Getting smarter at managing avionic software
The results of a two-day requirements elicitation workshop with
DTAES

P. Charland
D. Dessureault
G. Dussault
M. Lizotte
F. Michaud
D. Ouellet
M. Salois
DRDC Valcartier

Defence R&D Canada – Valcartier
External Client Report

DRDC Valcartier ECR 2007-097
October 2007

Getting smarter at managing avionic software
The results of a two-day requirements elicitation workshop with DTAES

P. Charland
D. Dessureault

G. Dussault
M. Lizotte
F. Michaud
D. Ouellet
M. Salois

Defence R & D Canada – Valcartier

External Client Report
DRDC Valcartier ECR 2007-097

October 2007

This page intentionally left blank.

Acknowledgements

The authors would like to thank the 11 participants for their enthusiastic involvement in the workshop. Special thanks are also addressed to Jennifer
and Sylvie for helping us in setting up the workshop and running the two days with an iron hand in a velvet glove.

DRDC Valcartier ECR 2007-097 i

Abstract
Managing avionic software effectively is a challenge with today’s tools and resources. The Directorate of Technical Airworthiness and Engineering
Support (DTAES) has recognized this and has approached DRDC Valcartier to address the problem from a technological standpoint. The team at
DRDC Valcartier has considerable expertise in software engineering but, unfortunately at this point, very little in avionics. To offset this, a series of
measures have been undertaken to ramp up this expertise (e.g. training, production of state-of-the-art reports).

The first of these measures was the organization of a two-day workshop with DTAES and its partners to better define their requirements in avionic
software management. This document highlights the results of this workshop, held in December 2006. The workshop used the Decision Support
Services (DSS) collaborative laboratory, located at the National Defence Headquarters in Ottawa. This laboratory is built on the MeetingWorks
toolset to provide each of the 11 participants with his own computer on which to give feedback on the four pre-identified domains (extraction,
analysis, visualization, process support). From the outputs of these domains, the main tasks or problematic areas were identified and prioritized.
These will be further investigated later, which could lead to relevant research projects and new engineering efforts within DRDC.

Since DRDC Valcartier is a neophyte in this area, this document will not be an all-encompassing list of all avionic software engineering problems. It
rather provides a summary of the most important requirements identified at the workshop. As DRDC Valcartier is currently negotiating with DTAES
to improve various other aspects related to the air platforms, the document also provides an opportunity to spotlight potential openings for future
collaboration to improve the whole avionic engineering process.

Résumé
De nos jours, il est très difficile de gérer efficacement les logiciels d’avionique avec les outils et les ressources disponibles. La Direction de la
navigabilité aérienne et du soutien technique (DNAST) a reconnu ce problème et a approché RDDC Valcartier pour l’aborder d’un point de vue
technologique. L’équipe à RDDC Valcartier possède une expertise considérable en génie logiciel, mais n’a malheureusement pas beaucoup d’expé-
rience en avionique. Pour pallier cet état de fait, une série de mesures ont été prises pour accélérer l’acquisition de cette expertise (p. ex. formation,
production de rapports sur l’état des connaissances).

La première de cette mesure consistait à organiser un atelier de deux jours avec DNAST et ses partenaires pour mieux définir leurs besoins en gestion
des logiciels d’avionique. Ce document met en évidence les résultats de cet atelier, tenu en décembre 2006. L’atelier a eu lieu au laboratoire des
Services d’aide à la décision, situé au Quartier général de la Défense nationale à Ottawa. Ce laboratoire est basé sur la suite d’outils MeetingWorks
et fournissait un ordinateur à chacun des onze participants sur lequel ils pouvaient donner une rétroaction dans les quatre domaines pré-identifiés
(extraction, analyse, visualisation, soutien au processus). À partir des résultats obtenus dans ces domaines, les tâches principales ou les régions à
problèmes ont été identifiées et priorisées. Celles-ci seront étudiées plus en détail plus tard, ce qui pourrait mener à des projets de recherche pertinents
et à de nouveaux efforts d’ingénierie pour RDDC.

Puisque RDDC Valcartier débute dans le domaine, ce document ne constitue pas une liste exhaustive de tous les problèmes d’ingénierie de logiciels
d’avionique. Il fournit plutôt un bon résumé des plus importants besoins mentionnés à l’atelier. Comme RDDC Valcartier est présentement en
négociation avec DNAST pour améliorer divers autres aspects reliés aux plateformes aériennes, ce document présente aussi une occasion d’illustrer
des ouvertures potentielles de collaborations futures pour l’amélioration de l’ensemble du processus d’ingénierie avionique.

DRDC Valcartier ECR 2007-097 ii

Executive Summary

The Directorate of Technical Airworthiness and Engineering Support (DTAES) has recognized that managing avionic software effectively is a chal-
lenge and has approached DRDC Valcartier to address the problem from a technological standpoint. The team at DRDC Valcartier has a vast expertise
in software engineering, but it currently lacks the necessary knowledge in avionic software. To offset this, a series of measures have been undertaken
to ramp up this expertise (e.g. training, production of state-of-the-art reports). The first of these measures was the organization of a two-day workshop
with DTAES and its partners to better define their requirements in avionic software management.

This document highlights the results of the workshop, held in December 2006. Four domains were identified prior to the workshop to feed the
brainstorming sessions. The outputs for these four domains describe the current situation, as it came out during the two days. Here is a summary:

• First domain: Extraction

– Development environment: The consensus is that more automated design/code generation tools should be used but, currently, a heterogeneous
environment is usual. Many compilers are used and managing makefiles is a problem. There are tailored simulators for specific avionic
platforms.

– Documentation: Huge paper documents are the norm. This should be changed to automate documentation generation and management as
much as possible.

– Hardware: Federated boxes are the norm but there is a will to move toward more open architectures. Bus 1553 and its extensions are critical
but there are other busses. New processors are integrated but heat is a big factor.

– Human personnel: There is a discrepancy between what is taught in universities and what is really needed. There is no formal training for
software architects. Developers are either contractors or Crown employees (civil & military). Users underevaluate the complexity of the
software.

– Models: There is a will to use modern model-driven architecture & design but there is a long way to go. People are afraid of (unproven) new
things in safety-critical systems. Real-time variants of UML are gaining momentum.

– Source code: Access to source code is often a problem because of licenses and international regulations. Ada, assembly, (MISRA) C, and
(JSF) C++ are most common. Free and Open Source Software (FOSS) is pointing its nose in some areas.

• Second domain: Analysis

– Software comprehension: Design patterns are used with a lack of rigor and become corrupted over time. Anti-patterns are also of interest to
find things that should not be there or is bad practice. Finding a good way to explore large software is an issue.

– Validation: Traceability is a big issue, both forward and backward. Validation of the tools is essential but not always performed. There is a
need for stricter usage rules enforcers and stricter impact analyses.

– Verification: Models should be used for verification but this is not the norm yet. Schedulability analysis is critical but lacks formal support.
Proving timing, concurrency, and assertions properties comes out strong in the list of priorities. Unit and coverage tests seem to be the two
main testing techniques.

DRDC Valcartier ECR 2007-097 iii

• Third domain: Visualization
– Charts, diagrams, and graphs: There is a lack of good visualization specific to real-time and embedded systems. Dynamic structures and

properties need to be seen. State diagrams are underused and many charts from UML and SysML should also be used more.
– User Interface: There are many good examples of good interface design (e.g. Google and Nintendo Wii). Unfortunately, there are probably

more bad examples (e.g. Rational, ARTiSAN). Most tools have big flaws and designers do not show due diligence in this area.

• Fourth domain: Process support
– Proportion of effort: About 30% of the verification process is dedicated to verifying the software itself. The rest is performed mostly on

‘paper’ (it might be in electronic form).
– Target: Both product qualification and safety certification (airworthiness) are the end goal but the importance of consistency, completeness,

and agility was also stated.
– Requirements: Most requirements are stated in natural text, which is a problem as it lacks rigor. DOORS is mandated by the Assistant Deputy

Minister (Materiel) (ADM(Mat)). Traceability to requirements is currently very important; some feel too much so.

From these outputs, four pressing problems were extracted and prioritized. These problems provide an excellent starting point for collaborative work
with other Canadian laboratories to improve the avionic engineering process for the Canadian Forces and their partners. Here is a summary:

• Problem 1: Avionic Software Toolbox and Methodologies
The keyword here is probably integration. There are many good tools but most of them do not talk to each other. A research project should
leverage these tools as much as possible and only develop new tools when necessary. Tools should adapt to the methodologies and not the
reverse, which is often the case with current tools. There is also a need to keep on top of new technologies and train the engineers as they and the
technology become available.

• Problem 2: Capture and use requirements in a more proactive fashion
In theory, requirements are set in stone; in practice, they evolve and become outdated. There is a need to develop a set of tools and methodologies
that would link together the software tools to provide better traceability and different levels of detail.

• Problem 3: Technology watch and tool categorization
The objective is to develop a capability to provide expert advice on existing tools, to benchmark and categorize new ones, and to develop
methodologies to fully tap their potential.

• Problem 4: Quick access to current capabilities
There is currently no way to get a newcomer up to speed in all aspects relevant to a particular avionic project within a reasonable and practical
amount of time. The problem consists in finding one.

P. Charland, D. Dessureault, G. Dussault, M. Lizotte, F. Michaud , D. Ouellet, M. Salois; 2007; Getting smarter at managing avionic software;
DRDC Valcartier ECR 2007-097; Defence R & D Canada – Valcartier.

DRDC Valcartier ECR 2007-097 iv

Sommaire
La Direction de la navigabilité aérienne et du soutien technique (DNAST) reconnaît que la gestion efficace des logiciels d’avionique est un défi et a
approché RDDC Valcartier pour aborder ce problème d’un point de vue technologique. L’équipe à RDDC Valcartier possède une vaste expertise en
génie logiciel, mais souffre d’un manque de connaissances en logiciels d’avionique. Pour pallier ce problème, une série de mesures ont été prises pour
accélérer l’acquisition de cette expertise (p. ex. formation, production de rapports sur l’état des connaissances). La première de ces mesures consistait
à organiser un atelier de deux jours avec DNAST et ses partenaires pour mieux définir leurs besoins et gestion des logiciels d’avionique.

Ce document présente les résultats de cet atelier, tenu en décembre 2006. Quatre domaines ont été préalablement identifiés avant l’atelier pour lancer
les sessions de remue-méninges. Les résultats de ces quatre domaines décrivent la situation courante, telle que discutée pendant les deux jours. En
voici un résumé :

• Premier domaine : Extraction
– Environnement de développement : Le consensus est que des outils plus automatisés de conception/génération de code devraient être utilisés,

mais que présentement un environnement hétérogène est usuel. Plusieurs compilateurs sont utilisés et la gestion des fichiers de configuration
(’makefile’) est un problème. Il existe des simulateurs sur mesure pour des plateformes avioniques données.

– Documentation : Les énormes documents papier sont communs. Ceci devrait changer pour automatiser autant que faire se peut la génération
de la documentation et sa gestion.

– Matériel : Des boîtes fédérées constituent la norme, mais il y a une volonté d’aller vers des architectures plus ouvertes. Le bus 1553 et ses
extensions sont critiques mais d’autres bus sont utilisés. De nouveaux processeurs sont intégrés, mais la chaleur est un facteur important.

– Personnel humain : Il y a une incompatibilité entre ce qui est enseigné dans les universités et ce qui est vraiment requis. Il n’y a pas de
formation formelle pour les architectes logiciels. Les développeurs sont, soit des contracteurs, soit des employés de la couronne (civils et
militaires). Les usagers sous-estiment la complexité du logiciel.

– Modèles : Il y a une volonté d’utiliser les architectures et la conception guidés par modèles, mais il y a beaucoup de chemin à faire. Les
gens ont peur des nouvelles choses (non prouvées) dans les systèmes où la sûreté est critique. Les variantes temps-réel d’UML gagnent en
popularité.

– Code source : L’accès au code source est souvent un problème en raison des licences et des règlements internationaux. Ada, l’assembleur,
(MISRA) C et (JSF) C++ sont les plus communs. Les logiciels libres pointent leur nez dans quelques domaines.

• Deuxième domaine : Analyse
– Compréhension du logiciel : Les patrons de conception sont utilisés avec un manque de rigueur et deviennent corrompus avec le temps.

Les anti-patrons sont également intéressants pour trouver des choses qui ne devraient pas être là ou qui constituent une mauvaise pratique.
Trouver une bonne façon d’explorer un gros programme est un problème.

– Validation : La traçabilité est un gros enjeu, tant en amont qu’en aval. La validation des outils est essentielle, mais n’est pas toujours effectuée.
Il y a un besoin d’imposer des règles d’usage de programmation et des analyses d’impact plus sévères.

– Vérification : Des modèles devraient être utilisés pour la vérification, mais ceci n’est pas encore standard. Les analyses d’ordonnancement
sont critiques, mais souffrent d’un manque de soutien formel. Prouver les propriétés de synchronisation, de concurrence et d’assertions ressort
fortement dans la liste des priorités. Les tests unitaires et de couverture semblent être les deux techniques principales de test.

DRDC Valcartier ECR 2007-097 v

• Troisième domaine : Visualisation
– Diagrammes et graphes : Il y a un manque de bonnes visualisations propres aux systèmes embarqués et en temps réel. Les structures et les

propriétés dynamiques devraient être visualisées. Les diagrammes d’état sont sous-utilisés et plusieurs des diagrammes d’UML et de SysML
devraient être utilisés davantage.

– Interface usagé : Il existe plusieurs bons exemples de conception d’interface (p. ex. Google et Nintendo Wii). Malheureusement, il existe
probablement plus de mauvais exemples (p. ex. Rational, ARTiSAN). La plupart des outils ont des défauts apparents et les concepteurs ne
font pas preuve de diligence raisonnable dans ce domaine.

• Quatrième domaine : Soutien au processus
– Proportion des efforts : Environ 30 % du processus de vérification est consacré à la vérification du logiciel lui-même. Le reste est effectué en

grande partie sur ‘papier’ (peut-être en format électronique).
– Cible : La qualification des produits et la certification de sûreté (navigabilité aérienne) sont les buts finaux mais l’importance de la consistance,

de la complétude et de l’agilité a aussi été mentionnée.
– Besoins : La plupart des besoins sont exprimés en langage naturel, ce qui est un problème à cause du manque de rigueur. DOORS est mandaté

par le sous-ministre adjoint (Matériels). La traçabilité des besoins est présentement très importante ; certains pensent même trop importante.

À partir de ces résultats, quatre problèmes immédiats ont été extraits et priorisés. Ces problèmes fournissent un excellent point de départ pour des
travaux collaboratifs avec d’autres laboratoires canadiens pour améliorer le processus d’ingénierie de l’avionique des Forces canadiennes et de leurs
partenaires. En voici un résumé :

• Problème 1 : Boîte d’outils et méthodologies pour les logiciels d’avionique
Le mot clé ici est probablement intégration. Il existe plusieurs bons outils, mais la plupart ne se parlent pas entre eux. Un projet de recherche
devrait miser sur ces outils autant que possible et développer seulement de nouveaux outils si nécessaire. Les outils devraient s’adapter aux
méthodologies et non l’inverse, ce qui est souvent le cas des outils existants. Il y a aussi un besoin de se tenir à jour avec les nouvelles technologies
et de former les ingénieurs à mesure que les technologies et les ingénieurs eux-mêmes deviennent disponibles.

• Problème 2 : Saisir et utiliser les besoins de façons plus proactive
En théorie, les besoins sont coulés dans le béton ; en pratique, ils évoluent et deviennent désuets. Il y a un besoin de développer un ensemble
d’outils et de méthodologies qui relieraient ensemble les outils logiciels pour fournir une meilleure traçabilité et différent niveaux de détail.

• Problème 3 : Veille technologique et catégorisation d’outils
L’objectif est de développer une capacité de services conseils experts sur les outils existants, de tester et catégoriser les nouveaux outils et de
développer une méthodologie pour profiter pleinement de leur potentiel.

• Problème 4 : Accès rapide aux capacités actuelles
Il n’y a présentement aucune façon pour un nouvel arrivant de se mettre à jour dans tous les aspects d’un projet avionique particulier dans un
délai raisonnable et pratique. Le problème consiste à en trouver une.

P. Charland, D. Dessureault, G. Dussault, M. Lizotte, F. Michaud , D. Ouellet, M. Salois; 2007; Pour une gestion plus intelligente des logiciels
avioniques; DRDC Valcartier ECR 2007-097; R & D pour la défense Canada–Valcartier.

DRDC Valcartier ECR 2007-097 vi

Table of Contents

Acknowledgements . i

Abstract . ii

Résumé . ii

Executive Summary . iii

Sommaire . v

Table of Contents . vii

1 Introduction . 1

2 How to Read and Navigate this Report . 2

3 First Domain: Extraction . 3

4 Second Domain: Analysis . 8

5 Third Domain: Visualization . 11

6 Fourth Domain: Process Support . 13

7 Problematic Areas . 15

8 Conclusion . 19

References . 20

List of Acronyms . 21

A List of Participants . 22

DRDC Valcartier ECR 2007-097 vii

B Raw Data . 23

B.1 First domain: Extraction . 23

B.2 Second Domain: Analysis . 31

B.3 Third Domain: Visualization . 35

B.4 Fourth Domain: Process Support . 41

B.5 Problematic Areas . 46

DRDC Valcartier ECR 2007-097 viii

1 INTRODUCTION

1 Introduction

Managing a modern air platform (e.g. a plane) is a challenge with today’s tools and techniques. Software engineering is, in general, an immature
domain. Precise recipes that work every time have not been developed yet, as may be the case in other engineering domains. The situation is even
more complex when avionic software is present as more stringent requirements are needed to ensure safety and security. Recognizing this problem,
the Directorate of Technical Airworthiness and Engineering Support (DTAES) approached Defence Research & Development Canada (DRDC) –
Valcartier to address this problem from a technological standpoint. That is to say: to survey and evaluate existing tools; to provide advice on existing
techniques and methodologies; to develop missing pieces; and to integrate all of the above.

Unfortunately, DRDC Valcartier has a vast knowledge of software engineering in general but very little knowledge of avionic software at this point.
In order to fill this knowledge gap, a series of measures were initiated to ramp up the expertise. For example, the production of surveys specific to the
real time/embedded avionic software world are in progress (e.g. programming languages, visualization techniques) and training has already started
with a four-day UCLA class on digital avionics system that was hosted by DRDC Valcartier.

The first step, however, was better define DTAES’ requirements in avionic software management. To this end, a two-day workshop was held in
December 2006 at the National Defence Headquarters, in Ottawa. The goal was to better define these requirements with DTAES and its partners and
to start learning about the whole avionic software process. It used the Decision Support Services (DSS) collaborative laboratory and the MeetingWorks
tool to provide each of the 11 participants with his own computer on which to give feedback. Annex A lists the participants.

Four pre-identified software engineering domains were seeded in the collaborative tool prior to the workshop to organize the brainstorming sessions
and get them going. The focus was originally given to validation and verification, the core expertise from the team at DRDC Valcartier, but the
workshop ended up with a much wider scope. These four domains are:

Extraction Identify the sources of raw information (e.g. programming language, documentation, tools, personnel).

Analysis Identify the different kinds of analysis (e.g. (anti) design patterns, impact analysis, schedulability, feature location).

Visualization Identify the different kinds of graphs and graphical representations that are commonly used (e.g. charts, diagrams, user interface).

Process support Identify the software engineering artifacts required to perform avionic software verification (e.g. proportion of effort, target,
requirements).

The summary of what came out from these four brainstorming sessions is presented in Chapters 3 to 6. Following these four sessions, the fifth and
last session consisted in identifying the main tasks or problematic areas in managing avionic software. Four problems came out of the workshop,
were prioritized, and are discussed in Chapter 7.

As stated above, DRDC is quite new to avionic software. As such, this document is not an all-encompassing list of all avionic software engineering
problems. The reader may feel that obvious matters are missing, but it is only a summary of the problems that were illustrated during the workshop.
As DRDC is currently tapped to develop into a long-term resource for avionic software expertise, it is also hoped that this document can serve as a
springboard toward collaborative work not only with DTAES but also with other partners.

DRDC Valcartier ECR 2007-097 1

2 HOW TO READ AND NAVIGATE THIS REPORT

2 How to Read and Navigate this Report

This document is designed to be read at different levels, from a general overview to more technical details. Entries for the four domains are within a
table arranged like this:

Title

Idea behind this entry

Summary if the entry is long enough

The entry itself, sometimes with subtitles

What’s missing? In describing the situation as is, a summary of missing pieces that
came out during the workshop.

This way, a reader interested in the overview can read only the left column when a summary is provided and read the right column only when more
details are required. Using the navigational bookmarks provided by the Portable Document Format (PDF) and Acrobat (Reader), it is easy to obtain
a quick overview. If further information is required, hyperlinks may be followed to specific references, either on the accompanying CD-ROM or on
the Web. Links are color-coded. A blue link points within the report, a cyan link points to a file on the CD-ROM, and a magenta link points to a web
page, indicating that access to the Internet is required. To get back from a followed link, use the ‘Go to previous view’ arrow on the toolbar/menu or
ALT-Left arrow on the keyboard. The left/right arrows can be used to go to the previous/next page.

DRDC Valcartier ECR 2007-097 2

3 FIRST DOMAIN: EXTRACTION

3 First Domain: Extraction

The idea behind the first exercise was to identify the sources of raw information that are available when tackling avionic software problems. Another
goal was to identify missing data that could be requested from contractors.

As this was the first exercise, many participants started thinking about other domains at this step. Thus, many of the items were transferred to other
categories (mainly the Second Domain: Analysis). Also, the original idea was to focus on existing systems but many participants expressed needs
they wished fulfilled. These will be addressed later as part of propositions for future research projects.

Development environment

What types of environment (tools/techniques)
are available?

The consensus is that more automated de-
sign/code generation tools should be used but,
currently, a heterogeneous environment is usual.
Many compilers are used and managing make-
files is a problem. There are tailored simulators
for specific avionic platforms.

Model-based design: Some contractors already use model-based design and automated code
generation, but this does not seem to be the norm. There is a wish to use more formal modeling
techniques, such as the Unified Modeling Language (UML) [1] and its derivatives (e.g. RT
UML), both internally and as a requirement for contractors but this is not yet the norm either.
Such a tool would need to pass airworthiness qualification requirements and adequate training
would be required to make sure that everyone uses the tool correctly.

Compilers: A subset of the popular compilers are generally used to ensure a deterministic and
safe behavior. Compilers that enforce usage rules, such as Motor Industry Software Reliability
Association (MISRA) C [2] or JSF C++ [3], are available but their use is not yet the norm. A
certifying compiler[4] that provides direct traceability between source code and machine code
would be really useful. Examples of compilers that are currently used include: GCC, Green
Hills Ada95, WindRiver’s Tornado II and Workbench.

Makefiles: On the CF-18 side, a team of 2 to 3 people are working on the makefile and making
sure that the development environment works. RMC does not teach the arcane art of make-
files and neither do most of the other universities (to the authors knowledge). This raises the
question: Should they teach this?

Simulator: There are many software/hardware simulators. The challenge is to keep them up
to date with the real systems and to make sure that the simulations are realistic and that real-
time constraints are maintained. This is usually achieved with hardware-in-the-loop types of
simulations, but it becomes quite difficult to demonstrate that the error-handling software will
work exactly the same way on the real system.

DRDC Valcartier ECR 2007-097 3

3 FIRST DOMAIN: EXTRACTION

Development environment (continued) What’s missing? A development environment should make it possible to assess the operational
requirements through scenario-based modeling and simulation. This would help in defining the
functional requirements and then start its allocation.

Documentation

What types of documentation are available?

Huge paper documents are the norm. This
should be changed to automate documentation
generation and management as much as possi-
ble.

Relevance: One of the key questions is what is the relevance of traditional documentation.
Everyone knows that, most of the time, it is out of date. Some even think that the static nature
of writing documentation makes it irrelevant by definition when contrasting it with the dynamic
nature of the design and the source code. Ideally, documentation generation and management
should be as automated as possible from the design/source code. In such a scenario, better
test cases would also be generated automatically and would keep their relevance throughout
software versions; it would also make it easy to see what has changed between versions.

Specifications: Expressing the requirements for a system is currently usually done textually.
The use of natural language is inefficient at best and often ambiguous. There is a need for more
formal specifications that can be used to better trace a requirement from design to code and
back. Such formal specifications are currently only used in high-criticality systems.

Quality and completeness: Documentation on paper is practically useless; at the very least an
electronic and fully indexed version should be made available. The quantity of information is
also staggering in most cases. Visualization is key to good documentation and good navigation
through it (low word count/high diagram count.)

What’s missing? A whole new way of managing documentation that is semi-automatically
generated from the model or the source code in order to stay up to date.

DRDC Valcartier ECR 2007-097 4

3 FIRST DOMAIN: EXTRACTION

Hardware

What types of hardware are in use?

Federated boxes are the norm but there is a will
to move toward more open architectures. Bus
1553 and its extensions are critical but there are
other busses. New processors are integrated but
heat is a big factor.

Types of boxes: Federated boxes are still the norm in legacy systems. There is a wish to move
toward a modular open system architecture. The hardware architecture must support multiple
levels of security. Proprietary boxes exist but there is a tendency to stay away from them as
much as possible and use a more open architecture instead.

Busses: Many types of busses are used but the most common one seems to be 1553, especially
with the new notices to the standard that are coming out. Dedicated lines are used in some
systems, especially older ones. A wave of faster busses that will go up to 800 Mbps in the
next few years are also coming, including well-known information technology standards such
as Ethernet IP.

Processors: Processors are becoming faster all the time, so new platforms should be designed
for change to adapt to them. However, heat is always a concern in embedded systems, so there
is a limit to what can be used. A partial list of currently used processors include: Intel 8086
and 8080, AYK-14. PowerPC is coming for new projects.

What’s missing? There is a need to develop better, more realistic, and more omnipresent black
box simulations. The useful life of new hardware is becoming shorter. It is therefore critical to
change the way we manage it.

Human personnel

What human resources are available to work on
the projects or as subject matter experts?

There is a discrepancy between what is taught
in universities and what is really needed. There
is no formal training for software architects. De-
velopers are either contractors or Crown employ-
ees (civil & military). Users underevaluate the
complexity of the software.

Educators: As is often the case with universities, there is a wide gap between what they teach
and what the industry needs. The industry should encourage their engineers to participate in
the composition of classes, especially at the graduate level.

Architects: System, software, and hardware so-called architects need to better communicate in
order to ensure that the configuration of an aircraft is known and planned for. A participant
noted that there is no formal education to become a software architect. The title can only be
earned after years in the trenches. Universities mainly produce coders (undergraduate).

Developers: There are many run-of-the-mills coder but only a precious few gurus. These truly
understand the system as a whole and are often better than the architect at explaining it. How-
ever, by their usually introspective nature, they normally do not freely participate in reviews
and meetings. Developers are a mix of contractors, public service employees, and military
personnel. There is a general lack of understanding of DND’s airworthiness requirements.

DRDC Valcartier ECR 2007-097 5

3 FIRST DOMAIN: EXTRACTION

Human personnel (continued) Users: Pilots, flight engineers, and maintainers are the main users of avionic software. One
generic problem is that users tend to think that software is easy. They do not understand the
complexity behind it and, thus, why it costs so much and takes so long to develop.

What’s missing? There is a need to adapt and adopt modernized processes to better address the
problems of avionic software. This is often a problem of people trying to use tried and tested
methods to solve new problems for which these old methods are no longer adequate.

Models

What types of (design) models are used across
avionic processes?

There is a will to use modern model-driven ar-
chitecture & design, but there is a long way to
go. People are afraid of (unproven) new things
in safety-critical systems. Real-time variants of
UML are gaining momentum.

Model-driven architecture & design: There is a strong push to move toward a more modern
approach where the design of the hardware and the software is done in common. The model
can then be used to generate the code automatically. It could also mean that the model itself
becomes executable and can be used to run simulations and get user feedback. Some people are
afraid of automated code generation as the process as yet to be certified. There is an AERAC-
funded project at RMC to study the impact of such an approach on avionic software [5].

Languages: Real-time meta-UML models variations are slowly rising. SysML, one of these
UML derivatives, receives a good interest from the industry but is not yet in common use.
AADL [6] is another formal language that is being pushed by a portion of the industry.

What’s missing? There is a need to use more models in the whole process. It is difficult to
make the clients aware of the benefits; hence they do not request enough information from
contractors. There is work to be done there, especially on standardization issues.

DRDC Valcartier ECR 2007-097 6

3 FIRST DOMAIN: EXTRACTION

Source code

What are the different languages that are in use
for avionic software?

Access to source code is often a problem because
of licenses and international regulations. Ada,
assembly, (MISRA) C, and (JSF) C++ are most
common. FOSS is pointing its nose in some ar-
eas.

Access: In many cases, the Canadian Forces do not have access to the source code as most
of the systems are American and fall under International Traffic in Arms Regulation (ITAR).
Companies are also rather shy in this area as they are concerned with intellectual property.
FOSS [7] is starting to appear in some areas, especially for UAVs.

Languages: Ada (83 & 95) is still in use but is not taught in most places anymore. Assembly
is present in many critical systems (e.g. CF-18). C seems to be disappearing to be replaced by
C++; this is cause for legitimate concerns on safety aspects as more modern and safe languages
are available. Universities are coming back to teaching some C/C++ as they recognize its
staying power, particularly for real time and embedded systems. Java is virtually absent from
avionic software, but there are some proponents.

Usage rules: MISRA C [2] and JSF C++ [3] seem to be the prevalent subsets for avionic
software, with a hint of the seemingly defunct Embedded C++ [8] (i.e. it has not been updated
in five years).

What’s missing? Because of ITAR and other proprietary solutions, libraries and documentation
are often not shared by the contractors. The Government of Canada needs to work on this and
maybe adopt a tougher line of conducts with the contractors. There is also a need to better
manage the different standards and address their impact.

DRDC Valcartier ECR 2007-097 7

4 SECOND DOMAIN: ANALYSIS

4 Second Domain: Analysis

The idea behind the second exercise was to identify the different kinds of analysis that need to be performed when tackling avionic software problems.
A second objective was to identify useful metrics and patterns.

Software comprehension

What steps are taken to understand the software
before reuse/update/upgrade?

Design patterns are used with a lack of rigor and
become corrupted over time. Anti-patterns are
also of interest to find things that should not be
there or is bad practice. Finding a good way to
explore large software is an issue.

Design patterns: They are used in principle in the development of avionic software. However,
they often erode along the way as the software is maintained. In such a case, an identified
pattern may not be the one that was originally intended. This is noteworthy as it may indicate
other corruptions from the original design. Finding an anti-pattern, something that should not
exist or is considered bad practice, is also noteworthy.

Software reconnaissance: Some tools exist to explore software [9] but they are currently lim-
ited. To be useful, such a tool should be as automated as possible and leave only low level
abstractions for the human operator to describe and understand.

Validation

What types of validation need to be performed
on source code and requirements?

Traceability is a big issue, both forward and
backward. Validation of the tools is essential
but not always performed. There is a need for
stricter usage rules enforcers and stricter impact
analyses.

Traceability: There is a strong need to follow a requirement from design to source code and vice
versa. There are often emergent requirements that are derived from coding constraints. These
also need to be added to the design to complete the traceability loop. Traceability from source
code to object code is also a requirement for certification at the highest levels of criticality.

Tools: The tools and techniques used for certification need to be validated themselves to make
sure that they fulfill the purpose for which they are used.

Coding standard: There are many compilers that enforce and demonstrate compliance to usage
rules (e.g. MISRA, JSF). However, these usage rules are a bare minimum and leave much to
be desired in safety and security properties.

What’s missing? There is a need to address not only what should go into the requirements but
also what happens when something is not there (or how to specify what should not be there).
The process should address the deviation and waivers of requirements and be able to analyze
their impact on the design, on integration and testing, on verification and validation, and on
overall system level functionalities.

DRDC Valcartier ECR 2007-097 8

4 SECOND DOMAIN: ANALYSIS

Verification

What kinds of proofs are required? What kinds
of tests are performed?

Models should be used for verification but this
is not the norm yet. Schedulability analysis is
critical but lacks formal support. Proving timing,
concurrency, and assertions properties comes out
strong in the list of priorities. Unit and coverage
tests seem to be the two main testing techniques.

Model vs. code: There is a strong push but little support yet to verify models as opposed to
source code. A family of new verification tools will be needed both to verify the models and
the tools that manipulate these models and generate code. As done with software testing, the
model should also be able to include the hardware in the loop. Simulation models in tools such
as Matlab/Simulink [10] are used as well. Modeling graphical languages (e.g. AADL [6]) are
being explored. Complexity arises in the sense that the learning curve for such languages is
quite steep. There are also problems with certification in terms of configuration control inertia
(i.e. how dependent is the result from the configuration of the tools?).

Schedulability: Analyzing the schedulability of the whole system is critical. This is often mis-
understood and a dangerous rule of thumb is often used. This rule of thumb states that, during
tests, if the utilization does not go over 70%, you’re ok; the system will not be overloaded.
Dependency between components is also a problem as it is often not considered correctly in the
schedulability analysis. DMA [11] and RMA [12] are two techniques that are widely used.

Proof: Timing is a paramount issue in real-time systems. The analyst must make sure that there
are no external timing impacts when performing a change. The way the system handles the
latency of warnings is a certification issue. Concurrency is also critical and preventive analysis
using simulation techniques should be used to detect potential deadlocks. The verification of
pre-/post- conditions and invariants through assertions is also common but proving that it is
handled correctly is a concern. Coupling analysis is required for both data and control flow.
Dynamic analysis to gather performance metrics and detect problems, such as memory leaks
and partition violations are needed. There is also a need to test for interoperability among
systems and provide some sort of proof of independence (partitioning). There is an add-in to
RoseRT [13] called Quality Architect that can be used to perform verification and validation.
Among other things, it does sequence chart comparison for both validation and regression test-
ing, as well as static race condition checking. It also does automated test stub generation to
allow for partial system testing.

Testing: There is a will to use a test first development approach, which means that the test
should be written and developed before the actual system. This is not the norm, however. Unit
tests can currently be achieved using tools that automatically generate a test harness. Such cases
do no usually test for all of the out-of-range conditions and other singularities. Airworthiness
certification requires specific levels of structural coverage, based on the assessed criticality
of the software. There is a need to test for and track changes in configuration throughout
the lifecycle. All test inputs/outputs should be recorded and accessible in order to be able to
perform coherent regression testing.

DRDC Valcartier ECR 2007-097 9

4 SECOND DOMAIN: ANALYSIS

Verification (continued) What’s missing? There is a need for a whole family of verification tools that are closely inte-
grated and can integrate hardware in the loop. The ‘system’ should have an array of available
solutions that is customizable to the task at hand and the availability of different inputs. Recog-
nizing that there is no ‘one-button-does-it-all’ solution, the system should nevertheless be able
to greatly speed the work for human analysts. For testing, there should be a way to address the
particular problems of developing features in parallel and making sure that tests are coherent for
the whole system and not just parts of it. The same set of tools and methodologies would also
apply to testing patches. Furthermore, there is a need to adapt testing procedures to perform at
different levels of integrity, depending on what standard it is tested against. There is also a need
to standardize verification in such a way that the results of different analyses can be compared
and amalgamated. Good tools are emerging [14] but do not work well with each others. Finally,
the process should be agile because new rules are forthcoming (e.g. RTCA DO-178C/ED12C
guidelines, expected in 2009).

DRDC Valcartier ECR 2007-097 10

5 THIRD DOMAIN: VISUALIZATION

5 Third Domain: Visualization

The idea behind the third exercise was to identify the different kinds of graphs and graphical representations that are commonly used when tackling
avionic software problems. Another goal was to identify problems or known solutions related to the graphical user interface.

Charts, diagrams, and graphs

What types of graphical representations are used
to design and understand an avionic system?

There is a lack of good visualization specific
to real-time and embedded systems. Dynamic
structures and properties need to be seen. State
diagrams are underused and many charts from
UML and SysML should also be used more.

Dynamic: There is a need to visualize the real-time aspects of processors and memory. For
example, there is a need to visualize dynamic structures and objects to pinpoint memory leaks,
partition violations, and potential deadlocks of resources. There is currently some tool support
for this but the output is mostly textual, which requires a lot of effort to understand. There is a
need for a visualization that would show time and space independence of a system (e.g. AR-
INC 653 [15]). There are some dynamic visualization techniques in RoseRT such as sequence
diagrams from an execution trace and animated state charts.

Static: A state diagram is a powerful and underused technique. It can show unknown/undefined
states that should not be present in the software. Time slicing charts, flow charts, and timing
diagrams for busses are used as well. A UML activity diagram is considered as the modern
flow chart. In fact, the whole gamut of UML diagrams are employed at some point. However,
UML diagrams should be tied in with the code and not be used only as documentation as is
currently the case. SysML is relatively new but seems to be gathering speed. Call graphs
specialized to show coupling among units are useful. There is a need in general for graphs to
be more responsive to changes in other graphs. There seems to be a lack of integration both
between the graphs themselves and the design/code. There is a need for a clear display that
shows test coverage and traceability at different levels. There is also a need to be able to clearly
follow data and control flows. There are some good tools that are used in academia (e.g. USE
(OCL) [16, 17], Alloy [18]) but not in the ‘real’ world.

What’s missing? Choices for visualization are too broad. There is a need to clearly define what
is the minimum set to look at in order to better define the needs. Efforts need to be devoted to
finding out what has been done so far. There is an extensive repertoire of work in high-integrity
software, including real time and embedded. There is also considerable previous work in this
area for generic software engineering [19].

DRDC Valcartier ECR 2007-097 11

5 THIRD DOMAIN: VISUALIZATION

User Interface

Who are the good, the bad, and the ugly of inter-
face design?

There are many good examples of good interface
design (e.g. Google and Nintendo Wii). Unfor-
tunately, there are probably more bad examples
(e.g. Rational, ARTiSAN). Most tools have big
flaws and designers do not show due diligence in
this area.

Good: Everyone can probably agree that Google specializes in simple and intuitive interfaces.
One fine example is Google Earth and its 3D navigation system. The use of mock up simu-
lators to show the human-machine interface to real users (pilots in this case) is of paramount
importance. It can also be used to test maintenance interfaces. Multiple/larger screens are more
and more prevalent as they really improve efficiency. The almighty ‘undo’ button is an absolute
essential but it can be improved. Tool should support saving everything so that a diagram and a
specific view do not need to be generated anew every time. The gaming industry has some good
ideas (and some bad ones). For example, the Nintendo Wii might be on the right track with its
new wireless remote that uses player movements as well as more traditional button presses to
control the action. Visio is another tool that is commonly used. Total and easy configurability
is always a good idea as it can prevent a lot of user frustration.

Bad: Delays between changes in diagrams are still much too long. Rational is recognized as
having a counterintuitive interface. It is much too broad and un-integrated in its approach (e.g.
Rose vs. RoseRT). ARTiSAN Studio [20] is used in some places but there are problems with
the interface. Among other things, it is difficult to navigate through the model to a specific
elements; scrolling and zooming are done very poorly; diagrams created automatically are so
cluttered that they become unusable; and these things are not easily modifiable (most of the
time they are not even configurable!). In fact, layout and edge routing are often problematic as
elements get on top of one another and make all of them illegible. Filtering is also a problem
as it is usually not simple in the tools. The only way is often to create a whole new diagram.
Sometimes, there are no clear indications of the relations between elements of the diagrams.
For example, most tools will not warn you that deleting something in one diagram may impact
other diagrams. There are often too many ways to do the same thing. In some cases, this may
be good, but, most of the time, it only confuses the user.

What’s missing? Visualization and graphical user interfaces must pay more attention to human
system integration as it is critical. A standard that would allow discussions on the model at any
level from managers to bits on the wire is needed.

DRDC Valcartier ECR 2007-097 12

6 FOURTH DOMAIN: PROCESS SUPPORT

6 Fourth Domain: Process Support

The fourth exercise was divided into two parts:

• Characterize the software verification process: The idea was to identify the software engineering processes that are required for avionic software
verification.

• Identify problematic areas: The idea was to identify specific tasks that are currently problematic in the avionic software process and might require
research.

The last item being the main goal of the whole workshop, it deserves the whole following chapter (7: Problematic Areas). The first item is discussed
next.

Proportion of effort

How much of the avionic software engineering
process is dedicated to verification?

About 30% of the verification process is dedi-
cated to verifying the software itself. The rest
is performed mostly on ‘paper’ (it might be in
electronic form).

It seems that about 30% of the avionics verification process is spent on verifying the software.
The other 70% consists in validating the paper trail (e.g. requirements, models, test procedures).
As always, there is a discrepancy between the software and its documentation. As manual code
inspection is often impractical, more attention should be given to the developed material (model
or code) or a MDA/MDD approach should be taken. Unfortunately, this is rather uncommon.
Test scenarios generally include mostly normal conditions and do not test enough for abnormal
ones. Furthermore, about 50% of errors found are due to poor requirements. There is a definite
need for tools that will help create more complete and coherent requirements. There is a general
tendency to respect the bottom line in the contract rather than proceed with due diligence. For
example, unit tests are not a requirement for certification, so they will often not be performed
and test will be source-code based rather than requirement based. However, some safety tests
are required by the certification process. Static analysis is more used than dynamic analysis,
mainly because it does not require the creation of tests, which should be designed to offer
good code coverage. However, the explicitness of dynamic tests is often cited as an advantage
over the black box that often is statc analysis, even if in practice it generally gives excellent
code coverage (both control flow and value domains). Code reviews are usually an informal
process. As it is currently impractical for large systems, it only catches syntactic and “pretty
printing” problems. Most experts agree that it should be performed more thoroughly as it helps
to catch errors early in the process. Documentation reviews are performed for consistency and
understanding but are considered insufficient for design assurance and compliance artifact.

DRDC Valcartier ECR 2007-097 13

6 FOURTH DOMAIN: PROCESS SUPPORT

Target

What are the goals of software verification?

Both product qualification and safety certifica-
tion (airworthiness) are the end goal but the
importance of consistency, completeness, and
agility was also stated.

Safety seems to be the ultimate goal for most applications, but product qualification is also very
important. Other goals that were stated and generated additional discussions are: consistency,
completeness, and agility. Consistency is very important but requires a Spartan discipline.
Generating the documentation automatically from the source code or the model would solve
this problem. Completeness is a contractual obligation. Any deviation from the original plan
must be justified and signed off. The same goes for correctness. Agility is a worthy goal but
it depends heavily on the strength of the original architecture and the level of erosion in the
maintenance, as most systems will ‘live’ for over 25 years. A good architecture from the get-go
also ensures a lower learning curve for maintainers. Tracking the changes to the requirements
can often give an idea of where the proposed architecture might be deficient.

Requirements

What is the role of the requirements in software
verification?

Most requirements are stated in natural text,
which is a problem as it lacks rigor. DOORS
is mandated by ADM(Mat). Traceability to re-
quirements is currently very important; some
feel too much so.

As natural text lacks rigor, interpretation of the requirements is always an issue. A clear glos-
sary is an important factor in making sure that all stakeholders understand the same thing. Text
has its place in less critical areas, such as user interface, but more formal representations should
be used for more critical systems. Formal methods are useful but generally do not scale to the
whole system, although they are becoming ever better (as does systems!) The DOORS project
management tool [21] is mandated by ADM(Mat) but is often not used to its full potential or
worst, misused. Everything should at least be linked through DOORS (or an equivalent prod-
uct) to allow complete traceability. There is a disconnection between contractual obligations
and due diligence. For example, some feel that the importance of traceability is overstated as,
sometimes, it just ensures that bad requirements find their way into every aspect of the develop-
ment and absent but good requirements are never expressed. Forcing contractors to apply due
diligence could help in alleviating this problem.

What’s missing? There is a need to develop a process to define clear and precise scenarios that
would link requirements to code. This would allow more intelligent testing by better control-
ling external conditions, including abnormal ones. There is a need for standardization, so that
lessons can be learned from previous projects and make sure that everybody speaks the same
language.

DRDC Valcartier ECR 2007-097 14

7 PROBLEMATIC AREAS

7 Problematic Areas

Nine activities and tasks requiring research and development were originally identified as commonly problematic by the personnel working on military
avionic software. Upon further inspection, five of the tasks were subtasks of others, so four problems are described below. A consensus was reached
as to their priorities and this is reflected by the order in which the problems are presented, the first one being the highest on the agenda. As can be
seen, the level of detail generally drops as we go down the list. This makes sense as the most pressing matter is probably the one that was given
the most thoughts. However, other important problems may be identified later from the raw data (Annex B) but this is what came out of the 2-day
workshop.

Problem 1: Avionic software toolbox and
methodologies

The keyword here is probably integration. There
are many good tools but most of them do not talk
to each other. A research project should leverage
these tools as much as possible and only develop
new tools when necessary. Tools should adapt to
the methodologies and not the reverse, which is
often the case with current tools. There is also a
need to keep on top of new technologies and train
the engineers as they and the technology become
available.

Analysis: Safety analysis should be integrated in the design right from the start and tools should
support this. Analyzing the scheduler and making sure that the design works correctly and that
timing constraints hold is very important. Coupling analysis is essential but there seems to
be considerable room for improvement in tool support. Impact analysis should be combined
with other analyses whenever a change is performed on the software in order to make sure that
the change respects the overall design and that affected parts are correctly retested. This will
ensure that the software does not become so convoluted that it can no longer be maintained,
let alone certified. In fact, different ‘versions’ of the program, from requirements all the way
to maintenance, should never be unrelated. Everything should be traceable from one version
to the others. Another needed analysis is to develop a way of verifying the compliance of
partition/protection integrity (e.g. ARINC 653).

Modeling & Coding: Model driven design and development should be thoroughly investigated
as the projected gains are huge. Any modeling tool should at least be able to model concurrency
constraints (e.g. mutual exclusion, precedence, release times, completion times). In the current
way of things (i.e. not model driven), there is a need to recover a complete architecture from the
source code. If successful, this could provide a way to use model driven architecture and design
in the maintenance of legacy code. In any case, this could be quite useful in understanding any
software, not just avionics. There is a definite incentive for coders to learn what is termed
‘defensive coding’, so training should be provided. Existing tools and techniques could be
leveraged to improve and automate parts of this but integration and adaptation will be required.

Testing: Automating test coverage, as per safety requirements, is not well supported by current
tools. For example, they lack in baselining and auto updating as code and requirements evolve.

DRDC Valcartier ECR 2007-097 15

7 PROBLEMATIC AREAS

Problem 1 (continued) Most tools also offer little to no support in covering not only each line of code but also each
of the requirements from a functional perspective. It would also be nice if the tool was able to
derive input test cases to cover areas missed by the test coverage. Regression testing is also a
problem as it is difficult to make sure that maintenance activities do not cause more problems
than they solve. Black box testing could also benefit from more tool support. For example, the
development of realistic simulations could be made easier and more standard.

Visualization: Software is becoming bigger and more complex. Navigating through this com-
plexity thus becomes a challenge. Therefore, the toolset should come with good visualization
paradigms and a very good, state-of-the art user interface [19].

Problem 2: Capture and use requirements in a
more proactive fashion

In theory, requirements are set in stone; in prac-
tice, they evolve and become outdated. There is
a need to develop a set of tools and methodolo-
gies that would link together the software tools
to provide better traceability and different levels
of detail.

Correctly capturing the requirements on any software project is always a challenge. This is
even truer for avionic software as lives depend on it. Currently, there seems to be a tendency to
have ‘dead’ requirements. You set them once and never change them. The problem is that real
life is not that static. Requirements will change in time and, as the project progresses, forgotten
or imprecise requirements will emerge as people involved better understand the problem.

A set of tools should be able to handle ‘live’ requirements and allow the triumvirate of require-
ments, architecture, and code to remain constantly synchronized. This way, it becomes possible,
for example, to link the requirements for safety with those for security, making sure that the
code for one does not interfere with the code for the other. This will also greatly improve the
traceability between the requirements and the actual code that fulfills them. It is also necessary
for airworthiness to be able to exhaustively bind functionality to code to prove due diligence.
In many cases presently, this seems to be a haphazard and manual process technology-wise.
There is room for improvement at the very least.

The tool should also allow the requirements to be expressed at different levels of detail. At
first, text can be used to put the ideas in place. As the requirements are refined, the tool should
allow (force?) the analyst to use more formal representations. In a perfect world, refining the
requirements would eventually turn them into a model, which in turn would generate the code
automatically. . .

DRDC Valcartier ECR 2007-097 16

7 PROBLEMATIC AREAS

Problem 3: Technology watch and tool catego-
rization

The objective is to develop a capability to pro-
vide expert advice on existing tools, to bench-
mark and categorize new ones, and to develop
methodologies to fully tap their potential.

Certification standards, such as RTCA DO-178B/C Software Considerations in Airborne Sys-
tems and Equipment Certification, require evidences showing that the software used in avionics
is correct. Because of the complexity involved, verification tools need to be used to assist the
analyst in the production of these evidences. The trend seems to be that these verification tools
will continue to be more involved in the process and the analyst will have to trust these tools to
a greater extent.

Hence, there is a need for making sure that these software verification tools are trustable. For-
mally proving their correctness would require a white-box analysis (i.e. with the source code).
However, because of intellectual property and the trade secrets involved, this would probably
not be feasible. Anyhow, the level of complexity of that kind of proof would be staggering, so
this is not an approach we would suggest. A black box analysis focusing on the detection of
false negatives, with many cleverly designed tests giving a good coverage of the problem space,
could give reasonable assurance on the capabilities of these verification tools.

There is a need to develop expertise, methodologies, and tools to better keep track of new
techniques and tools as they become available on the market. This includes studying and rec-
ommending approaches to deal with new and disruptive technologies to make sure that the
Canadian Forces leverage these technologies.

Another aspect of this effort is to be able to provide expert advice on what tools should be
strongly recommended in contracts. The flip side is to be able to validate contractors’ claim on
the tools they propose to use.

A set of benchmarks are thus needed to be able to compare tools and techniques. This effort
should leverage solutions developed for other problems in this chapter.

DRDC Valcartier ECR 2007-097 17

7 PROBLEMATIC AREAS

Problem 4: Quick access to current capabilities

There is currently no way to get a newcomer up
to speed in all aspects relevant to a particular
avionic project within a reasonable and practical
amount of time. The problem consists in finding
one.

Avionic systems in general and their software in particular are quite complex. It is practically
impossible for someone or even a small team to understand every aspect of it. Unfortunately,
this is often expected from the people who write the contractual requirements, which leads to a
series of problem (e.g. outdated requirements, misunderstandings, etc.) There is a solution that
consists in training someone intensively for 10 years whom will be used exclusively for this,
chaining him to his desk. Practically, people come and go and a more practical approach could
be to develop a set of techniques to develop crash courses illustrating the capabilities relevant
to a specific project. This could take the form of a customized ‘movie’ or strongly directed
readings. Some will argue that documentation could fill this role but the documentation is
usually quite too large to be considered efficient. The idea is to get the personnel up-to-speed
in a few days maximum, ideally in a few hours. This set of tools would also be quite useful to
introduce newcomers to any of the teams in the avionic system development. In fact, such a
capability would come in handy on any software project.

To address this, a project should start small. For example, developing a prototype to illustrate
the capabilities of one specific tool (e.g. OASIS [22]). Learning from this experience, it could
move to larger and larger systems and processes to describe eventually the entire set of Canadian
avionic capabilities. A stepping stone to go this big would be to develop a scenario of a typical
avionic software development project and adapt this scenario to the project under study. This
would have the side effect of providing a scenario to test most of the potential tools discussed
in this chapter and could serve as a platform to develop expertise.

DRDC Valcartier ECR 2007-097 18

8 CONCLUSION

8 Conclusion

This document presents a thorough summary of the points that were discussed during a two-day brainstorming session on avionic software. As such,
it is not a complete overview of all the problems related to this vast field but only a summary of what was discussed during these two days. Four
software engineering (sub)domains were identified and seeded into the collaborative tool to get the sessions going:

• Extraction

• Analysis

• Visualization

• Process support

From these four domains, four pressing problems were extracted and prioritized on the second day:

• Problem 1: Avionic software toolbox and methodologies
The keyword here is probably integration. There are many good tools but most of them do not talk to each other. A research project should
leverage these tools as much as possible and only develop new tools when necessary. There is also a need to keep on top of new technologies and
train the engineers as they and the technology become available.

• Problem 2: Capture and use requirements in a more proactive fashion
In theory, requirements are set in stone; in practice, they evolve and become outdated. There is a need to develop a set of tools that would link
with the other software tools to provide better traceability and different levels of detail.

• Problem 3: Technology watch and tool evaluation
The objective is to develop a capability to provide expert advice on existing tools, to benchmark and categorize new ones, and to develop
methodologies to fully tap their potential.

• Problem 4: Quick access to current capabilities
There is currently no way to get a newcomer up to speed in all aspects relevant to a particular avionic project within a reasonable and useful
amount of time. The problem consists in finding one.

The task is now upon the team in DRDC Valcartier to analyze these results. In the short term, various surveys are underway to address aspects specific
to real-time and embedded systems (e.g. C/C++ subsets, current analysis techniques and tools, and visualization techniques). A plan has been put in
place to organize specialized training, the first part of that plan was a four-day UCLA class on digital avionics that took place in January at DRDC
Valcartier. More training is in the scope for the fall. In the spring, work will begin on feasibility studies on relevant projects identified with the help of
the workshop results discussed in this document and the results of the upcoming surveys. The goal is to discuss projects with DTAES in summertime
and be ready to propose three-year projects in the fall for kickoff in April 2008. At this point, the doors to collaboration are wide open. . .

DRDC Valcartier ECR 2007-097 19

REFERENCES

References

1. Object Management Group (2007). Unified Modeling Language: Superstructure.
http://www.omg.org/technology/documents/formal/uml.htm. Read the PDF.

2. The Motor Industry Software Reliability Association (MISRA) (2004). MISRA C. http://www.misra-c2.com.

3. United States Department of Defense (2005). Joint Strike Fighter (JSF) C++. http://www.jsf.mil/downloads/down_documentation.htm.
Read the PDF.

4. Charpentier, Robert; Salois, Martin; Bergeron, Jean; Debbabi, Mourad; Desharnais, Jules; Giasson, Emmanuel; Ktari, Béchir; Michaud,
Frédéric, and Tawbi, Nadia (2001). Secure Integration of Critical Software via Certifying Compilers. In Information Technology Security
Symposium (CSE-CITSS), Canadian Security Establishment (CSE). Ottawa, Canada: (CSE). Read the PDF.

5. Shepard, Terry; Kelly, Diane; Smith, Ron; Chisholm, Ron; Jackson, Todd, and Mondoux, Paul (2006). Inspecting Designs in the Context of
Model-Driven Development. In CASCON ’06: Proceedings of the 2006 Conference of the Center for Advanced Studies on Collaborative
Research, New York, NY, USA: ACM Press. http://doi.acm.org/10.1145/1188966.1189002. Read the PDF.

6. SAE (2007). Architecture Analysis and Design Language (AADL). http://www.aadl.info.

7. Charpentier, Robert and Carbone, Richard (2004). Free & Open Source Software: Overview and Preliminary Guidelines for the Government of
Canada. (External Contract Report DRDC Valcartier ECR 2004-232). Defence Research & Development Canada – Valcartier. Québec (QC),
Canada. Read the PDF. 271 pages.

8. The Embedded C++ Technical Committee (2002). Embedded C++. http://www.caravan.net/ec2plus.

9. Charland, Philippe; Dessureault, Dany; Lizotte, Michel; Ouellet, David, and Nécaille, Christophe (2006). Using software analysis tools to
understand military applications. (Technical Memorandum DRDC Valcartier TM 2005-425). Defence Research & Development Canada –
Valcartier. Québec (QC), Canada. Read the PDF.

10. MathWorks (2007). MATLAB & Simulink. http://www.mathworks.com/products.

11. Tindell, Ken (2000). Deadline Monotonic Analysis. http://www.embedded.com/2000/0006/0006feat1.htm. Read the PDF.

12. Coombes, Andrew (2002). Deadline Timing and OSEK. http://www.embedded.com/story/OEG20021114S0039. Read the PDF.

13. IBM (2007). Rational Rose Technical Developer. http://www-306.ibm.com/software/awdtools/developer/technical. Rose Real-Time
(RT) is now part of Technical Developer.

14. Michaud, Frédéric and Carbone, Richard (2007). Practical verification and safeguard tools for C/C++. (Technical Report DRDC Valcartier TR
2006-735). Defence Research & Development Canada – Valcartier. Québec (QC), Canada. Read the PDF. 66 pages.

DRDC Valcartier ECR 2007-097 20

http://www.omg.org/technology/documents/formal/uml.htm
http://www.misra-c2.com
http://www.jsf.mil/downloads/down_documentation.htm
http://doi.acm.org/10.1145/1188966.1189002
http://www.aadl.info
http://www.caravan.net/ec2plus
http://www.mathworks.com/products
http://www.embedded.com/2000/0006/0006feat1.htm
http://www.embedded.com/story/OEG20021114S0039
http://www-306.ibm.com/software/awdtools/developer/technical

LIST OF ACRONYMS

15. Aeronautical Radio, Incorporated (ARINC) (2006). ARINC Specification 653.
https://www.arinc.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3.

16. Object Management Group (2006). Object Constraint Language 2.0. http://www.omg.org/technology/documents/formal/uml.htm. Read
the PDF.

17. University of Bremen Database Systems Group (2006). A UML-based Specification Environment (USE).
http://www.db.informatik.uni-bremen.de/projects/USE.

18. Software Design Group (MIT) (2006). The Alloy Analyzer. http://alloy.mit.edu.

19. Lemieux, François and Salois, Martin (2006). Visualization Techniques for Program Comprehension: A Literature Review. In The 5th
International Conference on Software Methodologies, Tools and Techniques 2006 (SoMeT ’06), ISBN: 1-58603-673-4, pp. pp. 22–47. Québec
(QC), Canada: IOS Press. Read the PDF.

20. ARTiSAN Software (2007). ARTiSAN Studio. http://www.artisansw.com.

21. Telelogic (2007). DOORS: Requirements Management for Advanced Systems and Software Development.
http://www.telelogic.com/products/doors/index.cfm.

22. Charland, Philippe; Ouellet, David; Dessureault, Dany, and Lizotte, Michel (2006). Opening up Architectures of Software-Intensive Systems: A
Functional Decomposition to Support System Comprehension. (Technical Memorandum DRDC Valcartier TM 2006-732). Defence Research &
Development Canada – Valcartier. Québec (QC), Canada. Read the PDF. 94 pages.

List of Acronyms
AADL Architecture Analysis and Design

Language
ADM(Mat) Assistant Deputy Minister

(Materiel)
AERAC Aerospace Engineering Research

Advisory Committee
ARINC Aeronautical Radio, Incorporated
DMA Deadline Monotonic Analysis
DND Department of National Defence
DRDC Defence Research & Development

Canada
DSS Decision Support Services

DTAES Directorate of Technical
Airworthiness and Engineering
Support

FOSS Free and Open Source Software
ITAR International Traffic in Arms

Regulation
PDF Portable Document Format
GCC GNU Compiler Collection
IP Internet Protocol
JSF Joint Strike Fighter
Mbps Megabits per second
MDA Model Driven Architecture

MDD Model Driven Development
MISRA Motor Industry Software Reliability

Association
OASIS Opening-up Architectures of

Software-Intensive Systems
OCL Object Constraint Language
RMA Rate Monotonic Analysis
RMC Royal Military College
UAV Unmanned Air Vehicle
UCLA University of California, Los

Angeles
UML Unified Modeling Language

DRDC Valcartier ECR 2007-097 21

https://www.arinc.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3
http://www.omg.org/technology/documents/formal/uml.htm
http://www.db.informatik.uni-bremen.de/projects/USE
http://alloy.mit.edu
http://www.artisansw.com
http://www.telelogic.com/products/doors/index.cfm

LIST OF PARTICIPANTS

Annex A
List of Participants

The following participants acted as subject matter experts:

Name Organization (position) Email Phone DSS Identifier
Maj Alain Beaulieu RMC Kingston beaulieu-a@rmc.ca 613-541-6000 ext. 6196 RMC
Julien Bourdeau DTAES (5-5) bourdeau.ja@forces.gc.ca 613-998-7315 DTAES 5-5
Robert Brodie DTAES (6-4C1) brodie.rgs@forces.gc.ca 613-991-9560 DTAES 6-4C1
Maj Shawn Durling WSM DET Mirabel durling.sh@forces.gc.ca 450-476-4697 WSM Det. Mirabel
Sylvain Fleurant DTAES (6) fleurant.sjlj@forces.gc.ca 613-993-1191 DTAES 6
Edison Nascimento DTAES (6-6-2) nascimento.eh@forces.gc.ca 613-990-7520 DTAES 6-6-2
Alain Nobert CAE (CF-18) nobert.a@forces.gc.ca 450-746-4106 CAE
Carl Sénécal CAE (CF-18) senecal.c@forces.gc.ca 450-476-4109 CAE
Maj Ron Smith RMC Kingston smith-r@rmc.ca 613-541-6030 RMC
Capt Trevor Stevens 14SES stevens.tml@forces.gc.ca N/A 14 SES
Capt Guillaume Vigeant WSM DET Mirabel vigeant.g@forces.gc.ca 450-476-4697 WSM

The following representatives from DRDC Valcartier organized the workshop and were present, except for Michel Lizotte:

Name Email Phone
Philippe Charland philippe.charland@drdc-rddc.gc.ca 418-844-4000 ext. 4491
Dany Dessureault dany.dessureault@drdc-rddc.gc.ca 418-844-4000 ext. 4109
Geneviève Dussault genevieve.dussault@drdc-rddc.gc.ca 418-844-4000 ext. 4754
Michel Lizotte michel.lizotte@drdc-rddc.gc.ca 418-844-4000 ext. 4495
Frédéric Michaud frederic.michaud@drdc-rddc.gc.ca 418-844-4000 ext. 4165
David Ouellet david.ouellet@drdc-rddc.gc.ca 418-844-4000 ext. 4596
Martin Salois martin.salois@drdc-rddc.gc.ca 418-844-4000 ext. 4677

And our gracious hosts from DSS:

Name Position Email Phone
Sylvie Jolicoeur-Wojcik Operator jolicoeur-wojcik.smc@forces.gc.ca N/A
Jennifer Walsh Manager walsh.jj@forces.gc.ca 613-945-1295

DRDC Valcartier ECR 2007-097 22

mailto:beaulieu-a@rmc.ca
mailto:bourdeau.ja@forces.gc.ca
mailto:brodie.rgs@forces.gc.ca
mailto:durling.sh@forces.gc.ca
mailto:fleurant.sjlj@forces.gc.ca
mailto:nascimento.eh@forces.gc.ca
mailto:nobert.a@forces.gc.ca
mailto:senecal.c@forces.gc.ca
mailto:smith-r@rmc.ca
mailto:stevens.tml@forces.gc.ca
mailto:vigeant.g@forces.gc.ca
mailto:philippe.charland@drdc-rddc.gc.ca
mailto:dany.dessureault@drdc-rddc.gc.ca
mailto:genevieve.dussault@drdc-rddc.gc.ca
mailto:michel.lizotte@drdc-rddc.gc.ca
mailto:frederic.michaud@drdc-rddc.gc.ca
mailto:david.ouellet@drdc-rddc.gc.ca
mailto:martin.salois@drdc-rddc.gc.ca
mailto:jolicoeur-wojcik.smc@forces.gc.ca
mailto:walsh.jj@forces.gc.ca

First domain: Extraction ANNEX B RAW DATA

Annex B
Raw Data

This section contains the data that was collected and prioritized for each domain during the two-day workshop. Each item is preceded by the
identifier of the person who made that entry. Refer to Annex A for the list of participants and their corresponding identifiers. Items marked with a
(Seed) identifier were put in by the team before the workshop to start the process along.

Entries were not edited. They express the personal opinions of the individuals and do not necessarily reflect the views of their respective organization.

B.1 First domain: Extraction

• (Seed) Development environment

– (RMC) Safety analysis tools

∗ (RMC) Development environments should include safety
analysis tools that can track the analysis to the various con-
figuration items

– (RMC) Education

∗ (RMC) We currently use Eclipse and Rational suite of mod-
eling tools to teach (Rose RT, Rational Rose Enterprise,...)

∗ (RMC) We use debuggers and instrumentation of the code
very little as part of the courses we teach for example cover-
age tools are not a main stay.

– (DTAES 6) Modeling

∗ (DTAES 6) Now/Future: Assess Operational Requirements
via scenario based modeling and simulation to define Func-
tional Requirements and then start its allocation

∗ (WSM) need to incorporate model driven prototyping into
the requirement definition process

∗ (DTAES 6) Need Model Checkers
∗ (DTAES 6-6-2) System modeling tools such as MatLab with

its Simulink tool box are used to develop real-time control

systems design and to provide simulation artifacts for system
analysis.

∗ (DTAES 6-6-2) Modeling graphical languages such as
AADL that can provide models at not only system levels but
also at hardware and software levels need to be explored.

∗ (DTAES 6) Need to get client aware of the benefits
∗ (DTAES 6-6-2) Formal validation of a system model needs

to be accomplished before the software design process starts.
∗ (CAE) For the design part of future project, we could use

UML model (at least for documentation).
∗ (DTAES 5-5) Airworthiness qualification requirements for

modeling tools, including a degree of configuration control
inertia.

∗ (14 SES) Problem with most modeling efforts is that it is us-
ing a language to communicate system behavior that no one
speaks very well. More time must be spent learning how to
use the modeling language than anything else.

– (DTAES 6-6-2) Contractors use development model-based de-
sign tools with auto-code generators

∗ (DTAES 6) NDHQ Clients lack knowledge of model-based
design and therefore do no request any info/data from con-

DRDC Valcartier ECR 2007-097 23

First domain: Extraction ANNEX B RAW DATA

tractors who could have otherwise better inform us about the
architecture/characteristics of our system

∗ (DTAES 6-6-2) Verification Environment
∗ (DTAES 6-6-2) Schedulability analysis tools that perform

RMA, DMA, etc. are needed for RT systems
∗ (DTAES 6-6-2) structural coverage analyzers
∗ (DTAES 6-6-2) intelligent test case generators
∗ (DTAES 6-6-2) data flow and control flow analyzers (cou-

pling analyses) are needed
∗ (DTAES 6-6-2) requirements-based test coverage analyzers

are needed
∗ (DTAES 6-6-2) requirements traceability analysis tools are

needed for forward and backward traceability
∗ (DTAES 6-6-2 dynamic analysis tools for RT systems to de-

tect problems like for example memory leakage, partition vi-
olations, and gather performance metrics on the processor
and memory management schemas are needed.

– (DTAES 5-5) General guideline: Fidelity to actual platform in-
stalled in aircraft

∗ (DTAES 6) Need interoperability to be addressed
∗ (DTAES 6) Need Standardization

– (DTAES 5-5) Incentive for avionics industry (currently 90% US
based) to align with our strategy

– (Seed) Compiler

∗ (DTAES 6) Contractors use sub-set of standard Compiler (for
C++) in order to maintain Deterministic and safe behavior

∗ (WSM) Developers to use model driven architecture tools to
auto generate JSF C++

∗ (CAE) For most of our development we are using Assembler
for 8086, 8080 and AYK-14. I don’t know the name of the
assembler tools. For a small project

∗ (DTAES 6) Need guidance or even tools or better stan-
dards in order to define minimum characteristics acceptable
to clients in order to compile safe code

∗ (CAE) On a small prototyping project we are using the C++
compiler for GNU.

∗ (DTAES 5-5) Direct traceability demonstration requirement
between source and object for the highest criticality software
(Level A)

∗ (14 SES) Green Hills Ada95 Compiler
∗ (14 SES) gcc for C code

– (Seed) IDE
∗ (CAE) On a small prototyping project we are using Tornado

II IDE and we will eventually switch to Workrkbench, both
from WinrdRiver.

– (Seed) Libraries
∗ (DTAES 6) Lack of softcopy i.e. just pdf or word file. Un-

able to search, extract relevant info, or to trace
∗ (DTAES 6) Library not share by contractors (designers) to

clients (Air Force)
∗ (DTAES 6) ITAR (USA not sharing info) limits access to in-

formation
∗ (CAE) On our prototyping project we are using an OpenGL

library developed by ALT software. We don’t have the source
code.

– (Seed) Makefile
∗ (CAE) A team of 2 or 3 persons are working on the make

files and compilation system.
∗ (RMC) We do not teach the "art of makefile" do we need to?

We just give the students a makefile with pre-made instruc-
tions and they only need to include the name of the files at
the top, we do not get into the meaning of the other stuff.

– (Seed) Simulator

DRDC Valcartier ECR 2007-097 24

First domain: Extraction ANNEX B RAW DATA

∗ (WSM) challenge: maintaining concurrency with actual air-
craft software
· (WSM) concurrency is easily achieved if the simulator

uses the real avionics or emulated avionics. In such a
case, the embedded software can be updated before its
flight tested. Therefore illuminating the duplication of
effort.

∗ (DTAES 6) Need to develop realistic simulation of black
boxes, interfaces, clear I/O,

∗ (DTAES 6) Should talk about simulation versus simulators.

∗ (DTAES 5-5) DO-178B Verification objectives achievement
via simulation.

∗ (CAE) In house developed PC based flight simulators and
test stations using real avionic hardware.

∗ (RMC) We use simulators only in the Assembler arena.
Nothing else (other than MDD)

∗ (DTAES 5-5) Mostly lacking in system’s error handling
demonstration, paramount to the airworthiness paradigm.

• (Seed) Documentation

– (RMC) Relevance

∗ (RMC) A key issue with software doc is - what is the rel-
evance of it? Generally all doc that is not embedded in the
product (code or model) is by its nature irrelevant. Doc is sta-
tic, product is dynamic. Attempts to link the two with tools
have invariably failed. Think of other complex architectures
(buildings, bridges, airplanes). The architects & engineers
do not communicate designs of these creations using static
textual documents. In terms, of using any existing documen-
tation to extract design, even if one could do such a thing, it
has a very high probability of reflecting an intent or desire
that has long since been surpassed by reality (code).

– (DTAES 6-4C1) Specifications - Aircraft, System, Equipment,
SW

∗ (DTAES 6) Need to methods/tools to properly develop them
∗ (DTAES 6) Need to address impact of standards
∗ (DTAES 6) Need to use tools to document and of courser

trace them back to operational requirements, functional and
technical requirements.

∗ (DTAES 6) tracibility forward & back ward required

– (DTAES 6-4C1) Configuration Management Of Documentation
(hard & softcopy)

∗ (DTAES 6-4C1) Need to track / detect changes through de-
velopment & life cycle

– (Seed) Completeness

∗ (DTAES 6-4C1) ICD usually incomplete in details - (e.g. not
full w/MIL-HDBK-1553 details - missing precision, bus tim-
ing, system timing criteria or expect some e knowledge of
User)
· (OASIS) What is ICD?
· (DTAES 6-4C1) Interface Control Document - the link

between systems / boxes

∗ (DTAES 6) Need tools to V&V them

– (Seed) Quality

∗ (DTAES 6-4C1) Softcopy - not / partially searchable (e.g.
scanned PDF image not converted MS Word)

∗ (DTAES 6) Use of natural language is inefficient
· (RMC) Models could seriously help here,.

∗ (DTAES 6) Need clear visualization and in a grade fashion
(think levels of complexity or top-down or bottom-up)

∗ (CAE) The electronic version is not always accurate and it is
hard to find the required info in the paper version because of
the amount of documentation.

DRDC Valcartier ECR 2007-097 25

First domain: Extraction ANNEX B RAW DATA

∗ (RMC) The highest quality documents have low word count
and high diagram count (as long as they say the same thing).

∗ (DTAES 5-5) Software Requirements Specification is get-
ting a lot better, obviously mostly on high criticality sys-
tems...highly scrutinized for airworthiness,

– (Seed) Quantity
∗ (DTAES 6-4C1) ICD - 1000+ pages
∗ (DTAES 6) Overwhelming: how do we visualize the infor-

mation in a better fashion.

– (Seed) Up-to-date
∗ (DTAES 6-4C1) ICD Not always with the latest minor fixes
∗ (WSM) Documentation should be integrated in the develop-

ment process and be automatically updated as much as pos-
sible. (minimize human intervention in the documentation)
· (WSM) Test cases should automatically fill the require-

ments document and the code should be accessible
through an easy graphical interface that represents the
structure of the code.

∗ (WSM) need to improve configuration management across
organizations to ensure latest documentation can be identi-
fied and accessed

• (Seed) Hardware

– (DTAES 6) Architecture
∗ (DTAES 6) Still using federated system of boxes
∗ (DTAES 6) Moving toward MOSA : Modular Open System

Architecture approach
∗ (CAE) Architecture must support multilevel of DO-178B (

in the same CPU) by using ARINC 653 compliant Operating
System

– (CAE) Hardware Platforms
∗ (CAE) Proprietary Hardware should be avoided

∗ (CAE) VITA 48/VPX (new VME generation)
∗ (CAE) Compact PCI

– (Seed) Binary code
∗ (Seed) Disassembler

– (Seed) Bus
∗ (DTAES 6-4C1) MIL-STD-1553 (various versions)
∗ (DTAES 6-4C1) MIL-STD-1760
∗ (DTAES 6-4C1) Serial RS232, RS422, RS485, CSDB
∗ (DTAES 6-4C1) AFDX - ethernet
∗ (DTAES 6-4C1) ARINC 429 & maybe 629
∗ (DTAES 6) Huge variety of dedicated lines of communica-

tion among boxes (old system)
∗ (DTAES 6) Security of data is critical
∗ (DTAES 6) Integrity is critical
∗ (DTAES 6) Use of IT based busses coming up (Ethernet, IPs,

etc..)
∗ (CAE) IEEE 1394 (Firewire) the JSF Bus
∗ (DTAES 6-4C1) E1553 - next 1553 standard

– (Seed) Communications
∗ (DTAES 6) Huge requirements for much broader bandwidth

i.e. from data and verbal comm. to huge stream of video

– (Seed) Network
∗ (14 SES) Protocols
∗ (14 SES) Topology

– (Seed) Processors

– (14 SES) Processor development is progressing at such a rate that
I see little or no need to define any particular set of processors that
are used. Any solution developed must be able to be modified for
a new processor in a relatively short order.
∗ (CAE) Yes but heat is a concern is embedded system

DRDC Valcartier ECR 2007-097 26

First domain: Extraction ANNEX B RAW DATA

∗ (CAE) intel 8086, 8080, AYK-14 and PowerPC (for futur
project).

• (Seed) Human personnel

– (RMC) Educators

∗ (RMC) There is a wide gap between the educators and the
customers. There is a need for the personnel working in en-
gineering to participate in the composition of the graduating
classes.

– (Seed) Architects

∗ (14 SES) System
∗ (14 SES) Hardware

· (WSM) need better coordination to ensure aircraft hard-
ware configuration is known and planned for

· (DTAES 6) Military Environments remain harsh and dif-
ficult

· (DTAES 6) Obsolescence of HW is getting worse... short
life

· (DTAES 6) Need form fit and functions... as we replace
old within new H/W... also address the S/W migration

∗ (14 SES) Software
∗ (RMC) We use this term in the industry, but as far as I know

we have no education/training for such a beast. They only
get that designation after years in the trenches. The SE de-
grees must focus on this objective and stop producing pro-
grammers. It is the equivalent of a Mechanical eng school
turning out machinists. We need a huge shift in education.
We were on our way when the high tech bubble burst - un-
fortunately enrollments across NA have dropped, and along
with it, programs have been rolled back or paused (e.g. at
Queen’s for instance).

– (Seed) Developers

∗ (14 SES) There are code monkeys and then there are GURUs,
not sure how to tell the difference unless you’re in the code
with them both. GURUs are quite often better at explaining
the system than an Architect, but they generally do not freely
participate in design reviews etc.

∗ (WSM) contractors, public service and military
∗ (WSM) in general a lack of understanding of DND’s airwor-

thiness requirements
∗ (DTAES 6) Lack of model and simulation involving human

in the loop

– (Seed) Users
∗ (DTAES 6-4C1) Pilots, Flight Engineers, Maintainers
∗ (WSM) DRDC
∗ (DTAES 6) Human Systems Integration becoming critical:

Tolls are???
∗ (DTAES 6) Despite being Engineers; customers (NDHQ)

lack modernity in their approach.
∗ (WSM) "Software is easy" mentality is problematic
∗ (DTAES 6) Very diverse users for the same platform i.e.

same software is more and more used by an extremely di-
verse clientele.

– (Seed) Validator
∗ (DTAES 6) Need better tools to interpret results from the

contractor who did it

– (Seed) Verifier
∗ (DTAES 6) Customer needs better tools and better prepara-

tion for performing this at HQ. Or to better access the results
of V&V done by the contractors.

• (Seed) Models

– (RMC) Using models not only to produce documentation but also
to do evolutionary prototyping as well as the final code.

DRDC Valcartier ECR 2007-097 27

First domain: Extraction ANNEX B RAW DATA

∗ (RMC) Too often models are used to try something and then
are thrown away. Models that generate working code bring
to the forefront the architecture of the system and make it
visible. A modification to the code after does not weaken
the architecture because it is always present and the code is
modified through it.

– (14 SES) Flow Charts

∗ (DTAES 6) Ned a great deal more visual representation:
whole family of them

– (CAE) AADL

∗ (CAE) There is some push in the industry for AADL with is
a formal language that could used to generate a model

– (CAE) SysML

∗ (CAE) SysML (System Modeling Language) which is based
on UML with added System modeling capabilities received a
good interest for the industries

∗ (RMC) This initiative is evidence of the success of UML.
The prospect of true sys eng is becoming possible, one where
software and hardware co-design is truly possible. In past,
allocation was a death sentence - never reversible after day
1 of the project. SysML holds the promise of making this
decision transparent to the architect. we are not there yet.

∗ (DTAES 6) Must marriage software and hardware. See suc-
cessful approach done by General Dynamics Canada for the
Maritime Helicopter Project. Usage of UML with SysML

– (CAE) Are systems developers/builders should provide an Exe-
cutable Model as a deliverable?

– (Seed) Ad hoc

– (Seed) Data schemas

– (Seed) UML

∗ (Seed) RT UML

· (RMC) Not convinced that the "profiles" of UML are as
the meta UML, in so far as, too many profiles may end
being the downfall of UML. The evolution of ROOM
into a toolset (ObjecTime Developer, then RoseRT, then
Technical Developer) was not as significant as the incor-
poration of the strong aspects of ROOM into the UML
2.0 (structure diagrams, and the central role of sequence
and state diagrams)

· (RMC) There is a perception that MDD or MDA is un-
safe because a tool automatically generates some of the
code.

∗ (Seed) UML RT
∗ (RMC) We currently teach MDD for Real-Time software

systems using RoseRT an evolution of ObjectTime
∗ (RMC) There is currently a project that is funded by AERAC

to study the impact of MDD on avionic software
∗ (RMC) UML is fast becoming a defacto standard as more

and more students in NA graduate with at least some expo-
sure. The Air Force, imho, has not kept current in this area.
Any future SoS will include varying degrees of UML, and
UML-based tools. Standards become very important, for this
becomes the "drawing set" equivalent in SE.

• (Seed) Source code

– (RMC) Does the avionic software producers use pre and post
conditions in languages as well as assertions? This is the kind of
things for example provided by Eifell

– (DTAES 5-5) Access to source code is NOT at all the norm in
currently procured avionics systems; most of these systems fall
under ITAR.
∗ (DTAES 6) ITAR: Can we reverse-engineer object code?
∗ (DTAES 6) Intellectual Propriety: Huge issue with access

– (Seed) Languages

DRDC Valcartier ECR 2007-097 28

First domain: Extraction ANNEX B RAW DATA

– (Seed) Ada

∗ (14 SES) There is Ada83, Ada95, and I think 2005 these are
fundamentally different languages

∗ (RMC) We do not teach with Ada anymore, but I believe that
it is a language that is worth teaching due to its high engi-
neering value.

∗ (14 SES) Language used for both AIMP and MHP
· (DTAES 5-5) MHP is mostly C and some Ada 95

∗ (RMC) Ada has not been taught at RMC for more than 10
years now.

∗ (DTAES 6) Relatively common for High Integrity Systems
but fading away

– (Seed) Assembly

∗ (RMC) Students in Comp Eng get a strong background in
assembly, generally on the Motorola 68000

∗ (CAE) F-18 Missions computers, Store Management Set and
Communication Set Controller are written is assembly

– (Seed) C

– (Seed) C++

∗ (CAE) Used for prototype development.
∗ (DTAES 6) Extremely common but huge discomfort from

Safety aspect (V&V issues)

– (Seed) Java

∗ (CAE) Some people in the industries tell that Java can be-
come the best language for critical system?

∗ (DTAES 6) Not common in Avionics at all

– (RMC) At RMC we have recently changed the curriculum to
teach more than Java. It was recognized that C/C++ has remained
an important set of languages, particularly for RT systems.

∗ (RMC) We teach applied programming using C

∗ (WSM) Although C remains an important language, the main
difference with JAVA is the memory management is left to the
users. I believe that today’s high fidelity tools should not let
the developers manage the memory and manage it by itself or
via a manage garbage collector.

– (14 SES) Scripting languages (Perl etc)

– (Seed) Usage rules

∗ (Seed) JSF C++
∗ (Seed) MISRA C
∗ (Seed) MISRA C++?

· (CAE) I did not think that MISRA C++ exist,
· (CAE) What About EC++ (Embedded C++)

∗ (DTAES 6-6-2) For the new OASIS toolset what will be the
input data entry criteria?
· (DTAES 6-6-2) A compiler error free source code? Or

any source code even if it has not been compiled yet?

• (Seed) Other

– (WSM) Third party software

∗ (WSM) need strategies/processes to incorporate s/w gener-
ated by different organizations while respecting internal en-
gineering processes and the airworthiness requirements

∗ (DTAES 6) FOSS becoming common especially with UAVs

– (WSM) Real time philosophy

∗ (WSM) A switch to priority based scheduling would greatly
increase efficiency and would enable other valuable advan-
tages like graceful degradation of the system.
· (WSM) Although priority based scheduling seems

harder to verify due to its infinite number of system state,
there are mathematical foundations to prove the system
scheduability.

DRDC Valcartier ECR 2007-097 29

First domain: Extraction ANNEX B RAW DATA

∗ (DTAES 6) Need to clearly define RT as a standard

– (DTAES 6-4C1) Network Enabled Operations (NE Ops)
∗ (DTAES 6-4C1) Not just aircraft level but full network of

platforms (future)
∗ (DTAES 6) Must address linking A/C together, along with

other platforms (satellites, ships, vehicules, UUAVs, etc.
∗ (DTAES 6) SoS: Need to address interoperability among

large systems.
∗ (DTAES 6) Adaptable software to deal with specific threats

(think electronic warfare - UDFs)

DRDC Valcartier ECR 2007-097 30

Second Domain: Analysis ANNEX B RAW DATA

B.2 Second Domain: Analysis

• (Seed) Validation

– (DTAES 6-6-2) Need to check forward traceability between the
model and source code; Need to check the backward traceability
between source code and the model; Need to identify elements in
the model and source code which are missing traceability; Need
to identify derived requirements who may not have traceability to
higher requirements (e.g. design/architectural decisions).

– (DTAES 6-4C1) Validation of analysis tools - How well do they
document the SW for use in Certification?

– (Seed) Model Traceability in Source Code
∗ (CAE) Model should first to be used to validate customer re-

quirements
∗ (RMC) ignore

– (Seed) Requirements Traceability in Source Code or Model
∗ (DTAES 6) critical
∗ (DTAES 6-6-2) System models require formal validation to

system requirements before the real software design starts.
∗ (RMC) Emphasis must be given to the dark side of require-

ments
∗ (RMC) Functional Configuration Audits (part of Config

Mgmt) must be supported by the tools.
∗ (RMC) Allocation of requirements must be highly visible.
∗ (DTAES 6) Need to address the Deviation and Waivers of

requirements and how to analyze their impact on the design,
I&T, V&V, and System level functionalities.

– (Seed) Programming rules conformance
∗ (CAE) Done through code review.
∗ (DTAES 6-6-2) Need for automated source code checkers

for demonstration of compliance to the adopted coding stan-
dards.

∗ (DTAES 6) important in term of standardization for interop-
erability it impacts our confidence level of product from other
customers, other partners, or other contractors.

• (Seed) Verification

– (RMC) Model-based versus code-based V&V

∗ (RMC) Need to examine those features/characteristics that
can be verified at the model level vice the code. Move V&V
to highest level of abstraction as possible.

∗ (RMC) In a/c design or modification we verify (for certifi-
cation for instance) based upon the model (usually drawings
and math), and we inspect the product for conformance to the
approved design. It should (could) be the same for software.

∗ (DTAES 6) Family of Verification tools
∗ (DTAES 6) No single solutions but what are the best

tools/methods that best apply for RT application
∗ (DTAES 6) How do we address verification for huge soft-

ware programs as found on modern aircraft avionics?
∗ (DTAES 6) Automation: Need to make it easy and fast
∗ (DTAES 6) Need to address the hardware in the loop (espe-

cially for RT Avionics systems)

– (DTAES 6) Security

∗ (DTAES 6) Address unique requirements imposed by V&V
of classified modules/components/or complete software com-
ments

– (DTAES 6-6-2) Schedulability analysis such as RMA, DMA,
etc is very important for RT embedded systems (e.g. tasks
with periodic, non-periodic, synchronous, asynchronous, pre-
emptive, non-preemptive, priority-based, calendar-based, concur-
rency/rendezvous requirements, etc).

DRDC Valcartier ECR 2007-097 31

Second Domain: Analysis ANNEX B RAW DATA

– (DTAES 5-5) Timeliness and re-usability of verification creden-
tials/artifacts during development.

– (Seed) Proof

∗ (Seed) Timing
· (DTAES 6) Consideration in Real-time is paramount as

it affects the quality/values of the running date
· (DTAES 6-4C1) Verification of no external timing im-

pacts by changes critical.
- (DTAES 6-4C1) Latency of warnings a certifica-

tion issue.

∗ (Seed) Concurrency
· (RMC) There must be a clear statement on what kind of

deadlock resolution mechanism is being used and how
the OS supports it.

∗ (Seed) Stack Usage
∗ (Seed) Ad Hoc Temporal Logic

· (DTAES 6-6-2) Need detection methods for potential
overflow/underflow conditions of counters

∗ (Seed) Invariants
∗ (Seed) Value Range

· (RMC) Pre and post conditions with assertions and in-
variants should be used for this. The language has to be
able to support it.

· (DTAES 6-6-2) Need to auto test case generators not
only for normal range but also out of range conditions as
well as the error handling capabilities for singularities.

∗ (RMC) Schedulability
· (RMC) often overlooked / misunderstood. The 70% uti-

lization rule of thumb is dangerous, as it usually is invalid
in modern (multi-task, highly dependent) systems

· (DTAES 6-4C1) Legacy fleet deterministic RT and fu-
ture NE Ops priority based scheduling - both task & ex-

ternal interfaces
· (RMC) Response-Time-Analysis approach to analyzing

priority-based systems needs to be used in place of uti-
lization analysis

· (RMC) There must be a way to specify exclusion, prece-
dence and deadline constraints and schedule tasks with
these constraints. There is a need for a tool to do this.

· (DTAES 6-6-2) Schedulability analysis such as RMA,
DMA, etc is very important for RT embedded systems
(e.g. tasks with periodic, non-periodic, synchronous,
asynchronous, pre-emptive, non-preemptive, priority-
based, calendar-based, concurrency/rendezvous require-
ments, etc).

∗ (RMC) Dependency
· (RMC) Related to schedulability above, tools are needed

that extract and analyze the resource dependencies that
exist between tasks in a multi-tasking system. This be-
comes key to conducting schedulability analysis

• (Seed) Detection

– (Seed) Sanity Checks

∗ (WSM) in-service fault detection is heavily dependent on
end-user recognizing and documenting the problem

• (Seed) Testing

– (RMC) Test-First Development

∗ (DTAES 6) Define please
· (RMC) Design a test before you code. It is a form of re-

quirement verification. A concept mainly used in Agile
(or light weight) methods.

∗ (WSM) Probably means that the tests should be written and
developed before the actual system. The system is then devel-

DRDC Valcartier ECR 2007-097 32

Second Domain: Analysis ANNEX B RAW DATA

oped against the test gradually passing more and more tests
until completion.

– (DTAES 6) Sequencing of testing
∗ (DTAES 6) How to address parallel developments of new

feature or correction and its combined testing
∗ (DTAES 6) How do we addressed analysis of code develop-

ment prior to actually designing it (i.e. lack of engineering
discipline)

∗ (DTAES 6) How do we address analysis of testing for
"patches"

∗ (WSM) require airworthiness considerations to be accounted
for at project initiation vice at project acceptance

– (Seed) Unit Tests
∗ (CAE) OASIS could integrate a static unit test analysis to

verify for dead/unreachable code, etc.
∗ (DTAES 6) Module testing of high-integrity S./W varies in

accordance with the security and its safety integrity levels.
We need grading for such testing

∗ (CAE) Unit test can be achieved by automated tools that gen-
erate test harness

– (Seed) Fault Injection
∗ (Seed) Fuzzing
∗ (DTAES 6-4C1) validation of Design For Reliability / Fail-

ure Modes effects / degraded operation

– (Seed) Coverage
∗ (WSM) F-18 test facilities incorporating code coverage into

test environment
∗ (WSM) F-18 flight test program and operational test and eval

conducted by independent organizations who develop their
own test procedures. Developers may make recommenda-
tions as to what needs to be tested however they do not staff
the procedures.

∗ (DTAES 5-5) Airworthiness certification requires specific
levels (types) of structural coverage to be achieved, based on
the assessed criticality of the software, mostly by testing (re-
quirements based) or, exceptionally, by analysis.
· (RMC) These levels depend on the criticality of software

failure.
∗ (RMC) Statement and Decision coverage is a good measure

of the quality of a test when applied in a black box test envi-
ronment.

• (Seed) Feature Location/Components Identification

– (Seed) Software Reconnaissance
∗ (WSM) The tool should try to extract as much as it can. How-

ever, humans could be used to finalize the more complex low
level extraction of the regions of the code the tool cannot ex-
tract with high fidelity. The tool could even provide different
possible interpretations that a user could confirm by looking
at the code.

∗ (DTAES 6-4C1) Useful for SNAG rectification
∗ (CAE) Many views are required to understand a system, Sta-

tic, dynamic etc ..

– (Seed) Concept Analysis

• (Seed) Design Pattern Recovery

– (WSM) Anti-patterns identification
∗ (WSM) recognizing patterns is important but recognizing

anti-patterns is also very important. An anti-pattern is some-
thing that should be avoided to solve a particular problem.

∗ (RMC) Patterns are important to recognize, but the architec-
ture of the software normally erodes as the software is main-
tained. In this sense the pattern observed might not be what
we want to find.

• (Seed) Clustering

DRDC Valcartier ECR 2007-097 33

Second Domain: Analysis ANNEX B RAW DATA

– (RMC) Cross-cutting requirements have to be considered

• (Seed) Slicing

– (14 SES) If the tool can provide a graphical representation of a
slice, that would be appreciated.

• (Seed) Impact Analysis

– (RMC) Encapsulation

∗ (RMC) The goal of encapsulation (even pre OO) was to
bound the impact of change. Highly encapsulated approaches
to design such as that found in ROOM and now potentially in
UML 2.0 aid in limiting change impact

– (DTAES 6) traceability Analysis

∗ (DTAES 6) CRITICAL especially with Airworthiness certi-
fication

– (DTAES 6) Dependability Analysis

∗ (DTAES 6) Quite critical especially as the system mature by
getting new functions and loosing some too!

– (DTAES 5-5) This is a key aspect of airworthiness as it is ex-
tremely desirable to keep the re-certification effort commensurate
to the proposed changes.

• (Seed) Querying

• (Seed) Other

– (DTAES 6) Standardization

– (DTAES 6) Do we have any standards with analysis

DRDC Valcartier ECR 2007-097 34

Third Domain: Visualization ANNEX B RAW DATA

B.3 Third Domain: Visualization

• (Seed) Dynamic vs. Static

– (Seed) Dynamic

∗ (DTAES 6-6-2) need to have dynamic analysis tools for vi-
sualization of the creation/destruction of polymorphic objects
and their shifting behaviors

∗ (DTAES 6) What is the minimum set of dynamic visualiza-
tion proposed

∗ (DTAES 6-6-2) need tools for visualization of the RT aspects
of processor and memory management by the software (i.e.
RTOS function aspects)

∗ (DTAES 6-6-2) need tools for detection and visualization of
dynamic structures/objects, memory leakage, and potential
partition violations in the software

∗ (CAE) Dynamic visualization that could show the time and
space independence of a system (ARINC 653)

∗ (DTAES 6-6-2) need to detect and visualize real-time as-
pects/parts of the software (i.e. both model and source code)
where there is possibility of unbounded task priority inver-
sions due for example to locked shared resources

– (Seed) Static

∗ (DTAES 6) Choices are too broad... what is the minimum set
to look at.

∗ (DTAES 6-6-2) test coverage analyzers should provide visu-
alization outputs; same for traceability analyzers

∗ (DTAES 6-6-2) need structural coverage analyzers that can
provide visualization of statement and decision blocks that
have / have not been covered by specific test cases

∗ (DTAES 6-6-2) data flow and control flow visualizations at
any user-defined level

– (DTAES 6) Management of information and results

∗ (DTAES 6) Need database and libraries, get organized!

• (Seed) Documentation?

– (Seed) Create documentation using pretty pictures
∗ (RMC) Using documentation that is in the design tools. Ex-

changing information in contractor/producer format
∗ (DTAES 6) Allow for traceability to requirements and design
∗ (RMC) The only documentation at the software level (vice

system) that is not dangerous is documentation that is 100%
coupled to the product (i.e., regardless of how it gets gener-
ated or where it lives) it is a true representation of the current
req’t, design, test ...

– (Seed) As opposed to text?
∗ (DTAES 6) Should allow for some formal methods docs (ac-

tual equations)

– (DTAES 6-4C1) Collection of info on a specific change - e.g.
"MS Binder" of various analyses
∗ (DTAES 6) Should think in function of an Integrated Infor-

mation Environment

– (DTAES 6) Model
∗ (DTAES 6) Need to see the model used while doing model-

driven design
∗ (DTAES 6) Show clearly the architecture
∗ (DTAES 6) Enable the merging of new model/features

– (DTAES 6) Formal Approval and its evidence

• (Seed) Modeling

– (Seed) Ad hoc
∗ (DTAES 6) For many, the norm!

– (Seed) Free hand

DRDC Valcartier ECR 2007-097 35

Third Domain: Visualization ANNEX B RAW DATA

∗ (DTAES 6) Quite common for the staff at the HQ but really
simplified

– (Seed) UML

∗ (Seed) RT UML
· (RMC) See earlier comments in 1st domain on over-

specializing UML

∗ (Seed) UML RT
∗ (WSM) need a manageable implementation strategy that will

allow for the successful integration of a modeling environ-
ment into a legacy software development environment

– (14 SES) White board and Photos

∗ (RMC) This could be used to capture (document) software
decisions while using Agile methods

– (14 SES) Flow Charts

∗ (DTAES 5-5) State diagrams
· (RMC) a. does not belong under flow charts, and b) is a

powerful, under-used, software engineering tool

∗ (DTAES 5-5) Time slicing charts - illustrations par diagrams
∗ (DTAES 5-5) Timing diagrams (bus)

· (RMC) Many RTOS development tools/environments
provide this type of add-on, e.g. WindRiver’s Tornado
suite of tools, and 3rd party tools such as those by
TimeWiz (I-Logix)

∗ (RMC) Activity diagrams (UML) are the modern day flow
chart, only richer.

– (CAE) Emulators

∗ (CAE) Current systems (F18) are modelized by emulating
the assembly code which provide system behavior at the in-
terface level. (Mil-Std-1553, Display etc ..)

∗ (RMC) are often as complex as the system, and are an over-
looked critical element of RTS development. Usually not

built to be maintained, and therefore a good candidate for
reverse-architecting.

– (RMC) Safety Analysis tools (Visio - extension) FTA, ETA

∗ (RMC) Need to integrate the safety analysis with the soft-
ware modules (CSC CSCI or whatever they are called). Not
only to identify where the safety concerns are, but also where
software is used to mitigate or eliminate the risks.

– (RMC) System level representation other than Use Cases.

∗ (RMC) We need a system level representation not only soft-
ware based models. System interfaces and safety analysis
requires this kind of high level thinking

∗ (RMC) SysML is relatively new, but has good potential
∗ (DTAES 6) Add consideration for human in then loop (Hu-

man Factors/Human System Integration)

• (Seed) Techniques

– (Seed) Layout

∗ (Seed) 2D
· (Seed) Treemap
· (Seed) Call graph

- (DTAES 6-6-2) control coupling among several
units need to be visually identified

· (Seed) Flow diagram/chart
- (Seed) Control
- (Seed) Data

· (Seed) Sequence diagram
- (CAE) The modifications in the class diagrams

should be reflected in the sequence diagrams. Ra-
tional Rose RT didn’t do that when I used it.

· (Seed) Information mural
· (Seed) State chart

DRDC Valcartier ECR 2007-097 36

Third Domain: Visualization ANNEX B RAW DATA

- (DTAES 6-6-2) State transition diagrams: we need
tools to visualize potential unknown/undefined
states of the software

+ (WSM) Ideally, A good MDA tool applies a
correct by construction approach that would
not let an undesired state exist.

· (RMC) Polymorphism visualization - Sylogistic viewer
(Western)

· (DTAES 6-6-2) Class diagrams: need to identify classes
derived by multiple inheritance

· (14 SES) Use case diagram
∗ (Seed) 3D

· (RMC) Google Earth is a good example of a pleasant
experience 3-D tool

- (14 SES) Also provides a great example of naviga-
tion through a model

∗ (Seed) Edges - links between the nodes
· (Seed) Routing
· (Seed) Organic (rounded)
· (Seed) Orthogonal (90 degree)

∗ (Seed) Lenses
· (Seed) Change information
· (Seed) Fish-eyes
· (Seed) X-Ray
· (Seed) Zoom

- (CAE) The features (zoom in packages and se-
quence diagrams, morphing) demonstrated with the
tool developed in collaboration with BC University
are pretty interesting.

• (Seed) Tools

– (Seed) Integration

∗ (DTAES 6) None used but desperate to get some in place
∗ (RMC) Use of simulators (as in flight simulator) to try new

man machine interfaces before doing it on the target platform.
We used this with success before.

– (Seed) SHriMP
∗ (RMC) Cool tool, but why the new notation? A UML like

notation would do the same job but it is widely accepted.

– (Seed) UML
∗ (Seed) ArgoUML
∗ (Seed) Edgewater?

· (DTAES 6) Proposed suite use ECLIPSE
· (DTAES 6) We need to explore the effort deployed there

as some industries may end up using it
· (DTAES 6) Sponsors are USAF, USN, UK MOD and

soon Australia and Canada
· (WSM) Since its developed by the original developers

that did Object Time, it has a big Object Time flavor. The
tool is especially designed for avionics development.

· (WSM) need to recognize the international interest and
$$ being applied to this environment

∗ (Seed) Rational
· (RMC) Too broad, there are at least two very different

UML-based tools under Rational: Rose and RoseRT.
· (DTAES 6) Used for some of our contracts but we do not

use it within the HQ
· (RMC) RoseRT (originally ObjecTime Developer) un-

fortunately has the same bad UI as Rose (because of
ownership), but has a very robust modeling and code-
generation engine. It is worth checking out.

· (RMC) RoseRT visualization techniques include se-
quence chart generation from execution traces, animated
state charts

DRDC Valcartier ECR 2007-097 37

Third Domain: Visualization ANNEX B RAW DATA

· (RMC) We are currently investigating using Quality Ar-
chitect to perform V&V

· (RMC) RoseRT add-in Rat’ Quality Architect does se-
quence chart comparison for both verification to spec and
regression testing, as well as static race condition check-
ing. It also does automated test stub generation to allow
for partial system testing.

· (RMC) Tools should not only allow for modeling and
documentation of the design of software but support
V&V activities. We should be able to execute models
against oracles

∗ (Seed) Visio
· (DTAES 6) commonly used at NDHQ
· (RMC) Good automation API but requires security cer-

tificates to distribute code

∗ (Seed) Visual Paradigm
∗ (14 SES) ARTiSAN

· (14 SES) Annoying to move through model to a specific
element

· (14 SES) Scrolling and zooming are done very poorly
· (14 SES) Automatic generation of dependency diagrams

often results in unusable diagram (cluttered)
· (14 SES) Not easily modifiable

∗ (14 SES) Rapshody
∗ (DTAES 6) CORE
∗ (CAE) UML is often used for documentation only, but it

should be connected with the real code and requirements,
otherwise after a while the diagrams won’t be up to date. It
should also stay in electronic format. there is no need to have
that information on paper.

– (DTAES 6) TCP JSA TP 4 (SE) and TP 4-3 (Safety-critical Sys-
tem)

∗ (DTAES 6) Huge effort in visualization (and also analysis)
tools... see what has been done so far. Extensive repertoire of
work in High-Integrity S/W (including RT Embedded S/W)

– (RMC) Satisfiability tools - bounded requirements

∗ (RMC) Tools like Alloy (Bounded satisfiability) and Use
(OCL) are available in academia to prove assertions and re-
quirements, but are not used outside universities. Investigate?

– (CAE) The perfect tools

∗ (CAE) This tools shall modelized the static structure , dy-
namics behavior, define the real-time constraints that must
apply. Then generate code that with all the parameters on the
different targets platform and obviously be certifiable

– (DTAES 5-5) Simulation

∗ (DTAES 5-5) VAPS
∗ (DTAES 5-5) Matrix X

• (Seed) User interface

– (Seed) The good

∗ (DTAES 6) There is an interest to define such capability
within ADM(MAT)

∗ (DTAES 6-4C1) Multiple screen / computer support (e.g.
EBOLA)

∗ (14 SES) No delays when loading any particular diagram
(this is probably not possible)

∗ (DTAES 6) Need to access the critical components without
using a random approach as we can only do a partial review
(like Quality Assurance).

∗ (14 SES) The almighty "UNDO" button
∗ (14 SES) show those elements that a particular user does not

have access to change as separate from those that they can
change.

DRDC Valcartier ECR 2007-097 38

Third Domain: Visualization ANNEX B RAW DATA

∗ (DTAES 6-4C1) Support for presentations / workgroups (e.g.
store analysis not regenerate real time not every time)

∗ (RMC) Wii - the point being, look to the gaming industry for
good UI ideas, both in terms of user inputs and visualization
of output.

– (Seed) The bad

∗ (DTAES 6) Not used at MDHQ but should... but what should
we have

∗ (14 SES) No obvious indication of the dependency of one el-
ement to the rest of the model. (i.e. if I was about to delete a
function/whatever from the model, knowing that it was used
in 42 different sequence diagrams might have caused me a
moments delay before I accepted the change)

∗ (RMC) too many ways to do the same thing, starts out with
good intentions, and always leads to bug nightmares, and thus
user frustration.

– (Seed) The ugly

∗ (DTAES 6) Usually limited to amazingly complicated repre-
sentation when dealing with real avionics software.

∗ (14 SES) Placement of dependency lines often cross over el-
ements of the diagrams this obscures the ability to interpret
the visualization.

∗ (14 SES) Filtering what is shown on a particular diagram is
often painful if not impossible without creating a whole new
diagram.

• (Seed) Aspects to consider

– (Seed) Cognitive

∗ (DTAES 6) Must address the Human System Integration as-
pects... so GUIs are very important

– (Seed) Computation

∗ (DTAES 6) High Speed, stop computing capability, etc, are
needed

– (Seed) Interaction
∗ (DTAES 6) May need to compare our visualization tools with

those used by a prime contractors and his numerous sub-
contractors as each have their own development (and then
visualization) environments

– (Seed) Output
∗ (DTAES 6) Need to define the minimum essential sets of in-

formation required to perform our due diligence as profes-
sional specialists.

• (Seed) Essential requirements

– (Seed) Bidirectional Interface

– (Seed) Editable on the Fly

– (Seed) Filter/Highlight

– (Seed) Highly Scalable

– (Seed) Morphing
∗ (RMC) Adding a situational map in an optional pane would

help with localization

– (Seed) Multiple Views

– (Seed) Saving Views/Tags/Bookmarks

– (Seed) Scrolling & Panning

– (Seed) Search & Query

– (Seed) Thumbnail/Overview

– (Seed) Various and Easily Added/Replaced Layouts

– (Seed) Visual Attributes

– (Seed) Zooming

– (DTAES 6-4C1) Changes between versions / releases - present
how has the "picture" changed overall.

DRDC Valcartier ECR 2007-097 39

Third Domain: Visualization ANNEX B RAW DATA

– (DTAES 6-4C1) "Hard" documentation - reports will be needed
for the files / signoffs.

∗ (DTAES 6) From a legal point of view, professional engi-
neers have to sign their formal paper reports...

– (DTAES 6) Easy to learn, Easy to use, understandable by man-

agers of technical team

• (Seed) Other

– (14 SES) Must have easy access to control the configuration of
the elements and diagrams (CM like clear case etc) built into the
viewer.

DRDC Valcartier ECR 2007-097 40

Fourth Domain: Process Support ANNEX B RAW DATA

B.4 Fourth Domain: Process Support

• (Seed) SV Applies on

– (Seed) Software - what is the percentage of SV applying to soft-
ware?

∗ (DTAES 5-5) 30% applied to software
∗ (WSM) Since the code and the documentation are usually

not consistent, more attention should be given to the devel-
oped material. In the case of an MDA tool, verifiers can look
at the models.

∗ (WSM) need traceability to requirements. The assumption
the software, or the documentation, is correct may be wrong

∗ (DTAES 6-6-2) Platform (aircraft/ship/ground vehicle) op-
erational/mission requirements, including its interoperabil-
ity requirements, interface requirements, including MLS
protocols, hardware and software requirements: about
50% of errors found in avionics software are due to in-
complete, incorrect, ambiguous, inaccurate, inconsistent,
untestable/unverifiable requirements. We need to have bet-
ter tools for requirements verification and validation.
· (DTAES 6-4C1) We need tools for better requirements

definition too then!!!

– (Seed) Documentation - what is the percentage of SV applying to
documentation?

∗ (DTAES 5-5) 70% to documentation - requirements, models,
test procedures. Reality of now, requirement to reduce time
for documentation

– (RMC) Model driven dev. and not design / under MDD the cur-
rent 0% should go to 100%

∗ (DSS) Not to use the model as prototype
∗ (RMC) By this being absent, I suspect it implies that cur-

rently 0% is spent on the SV process using the models;

whereas in other eng domains, much of the verification is at
the model level.

– (DTAES 6) scenarios
∗ (DTAES 6-6-2) test cases shall be linked to the various user

operational scenarios and external conditions, including ab-
normal ones.

– (DTAES 6) Operational Environments
∗ (DTAES 5-5) Too little, too late. Most of the time, trivial

· (WSM) please elaborate
· (DTAES 5-5) ...Flt Test

– (WSM) Test and Support Environment
∗ (DTAES 5-5) Moving target. General lack of rigor in setting

up scenarios.

– (DTAES 6) contractual obligation versus proper due diligence

• (Seed) SV Activities

– (Seed) Software testing (e.g. Unit tests) does it apply? How?
∗ (DTAES 6) Make adjustment to its integrity levels (Safety &

Security) i.e. not one approach fits all
∗ (DTAES 5-5) Unit test currently not a requirement for certi-

fication. Value lies in troubleshooting. Typically source code
driven, not requirement driven.

∗ (RMC) There are two main views on testing for safety crit-
ical systems. First that of reliability of the software (does
it meet the user requirements without failures). Second that
of safety. The safety program does not have anything to do
with meeting user requirements, but that of the certification
agency.

– (Seed) Static Analysis (e.g. Metrics to detect rots) does it apply?
How?

DRDC Valcartier ECR 2007-097 41

Fourth Domain: Process Support ANNEX B RAW DATA

∗ (DTAES 6) Rather common and well understood

– (Seed) Dynamic Analysis (e.g. Code purify, coverage) does it
apply? How?

∗ (DTAES 6) Need improvement to get industry to use them
∗ (DTAES 6) Add RT consideration to address fundamental

characteristics expanded
∗ (RMC) Need to verify system for race conditions, deadlocks,

livelocks.
∗ (DTAES 5-5) Structural coverage analysis based on require-

ments testing (dynamic) is a compulsory requirement of DO-
178B compliance for the top three criticality levels in airwor-
thiness. Based on tools (SCADE, CodeTest, VectorCast, etc).

– (Seed) Code Inspection (e.g. Code review, walkthrough) does it
apply? How?

∗ (DTAES 6) Totally unpractical by hand except for module
level, even when it is done for a specific module, we need
better methods

∗ (DTAES 5-5) An inconsistent activity. Checklists and ex-
pected artifacts need to be defined otherwise it will be lim-
ited to variable spelling errors and indentation observations.
At the other end of the spectrum, they are often design re-
views which should have occurred before and address low
level requirements (e.g. semaphore implementation)

∗ (CAE) Code inspections and walkthrough are an important
part of S/W design process. They can find bugs early in
the process then limit the impact of defects found in the last
stage. The ratio cost benefit is high.

– (Seed) Document inspection (e.g. Diagram review) does it apply?
How?

∗ (DTAES 6) Most common effort done for ADM(MAT) or-
ganization (engineering), Extensive levels of problems with
understanding the verification effort.

∗ (DTAES 6-4C1) SW documentation must be complete &
maintainable. Airworthiness requires that code be fixed when
critical airworthiness problems attributed to SW arise the
SW documentation will be a key part of the Airworthiness
process.

∗ (DTAES 5-5) Useful for comprehension. At the moment,
considered insufficient for design assurance and compliance
artifact.

– (DTAES 6-6-2) verification of requirements, design, code, object
code, test cases, procedures and test results with traceability and
coverage analyses.

• (Seed) SV What to look for?

– (Seed) Consistency does it apply? How?

∗ (DTAES 6) Yes , a must
∗ (WSM) a must for maintenance activities. Different software

developers need to be able to understand what has been im-
plemented. Engineer the implementation.

∗ (WSM) Either extreme discipline is needed which means a
lot of overhead or the documentation is automatically kept
up-to-date.

– (Seed) Completeness does it apply? How?

∗ (DTAES 6) Yes, it is contractual and related to the customer
operational requirements

∗ (RMC) What ever is deviated or waived must be approved
and documented. For those changes to the spec they must be
covered by Engineering Change Proposals

– (Seed) Correctness does it apply? How?

∗ (DTAES 6) Same as for completeness ... a contractual oblig-
ation

– (Seed) Agility for new development does it apply? How?

DRDC Valcartier ECR 2007-097 42

Fourth Domain: Process Support ANNEX B RAW DATA

∗ (DTAES 6-4C1) Agility important due to the extended life
cycles of DND aircraft combined with mission capability
growth and the need to adapt with civil CNS/ATM upgrades
of the near to log term future (-> 2025) (CNS/ATM COMM
NAV SURV / AIR TRAFFIC MGMT).

∗ (RMC) The agility of a system depends on the strength of
the architecture and the level of its erosion during the main-
tenance part.

– (Seed) Design keeper (e.g. code comprehension, tracking) does
it apply? How?

∗ (DTAES 6) Most platform, "live" for more than 25 years...
well after the designer has retired: code comprehension is
paramount in order to be responsive with problem correction
and inclusion of new features on top of the existing software

∗ (DTAES 6) Learning curve for new design corrector must be
minimum.

∗ (WSM) software development needs to be engineered. Cre-
ativity and innovation, although encouraged, ultimately
needs to be engineered to be consistent with the design

• (Seed) SV Requirement artifacts

– (Seed) Vision document (e.g. CONOps) if so, which types?

∗ (RMC) The simplicity and clarity of user stories (stolen from
xP) may be an appropriate form at this level

∗ (RMC) Field level Statement of Deficiencies
∗ (RMC) Operational Research reports and simulation of ca-

pabilities

– (Seed) Glossary / Common vocabulary does it apply?

∗ (RMC) All requirements should be written in the language
of the domain, so yes a glossary is important

∗ (DTAES 6) Careful with natural language, lack of rigor
∗ (DTAES 6) Need standardization for sure

∗ (DTAES 6-4C1) Interpretation of requirements is a constant
issue.

– (Seed) Models / Diagrams (e.g. UML Use Cases) if so, which
types?
∗ (RMC) Use cases or similar techniques are applicable, only

if used in conjunction with scenario-based testing.
∗ (RMC) SysML req’t diagram - may be worth checking out??

– (Seed) Text (e.g. System Requirement Specifications, Change
Requests) if so, which types?
∗ (RMC) In the domain of Configuration Management and

System Engineering - Proof of Compliance
∗ (DTAES 6) Regretfully, natural language is used: try to have

a mix of formal requirements, requirements language, and a
bit of natural language especially wrt GUI and user interface.

∗ (14 SES) Tracking the changes to the requirements can of-
ten give an idea of where the proposed architecture might be
deficient

– (Seed) Formal methods does it apply? How?
∗ (RMC) Yes they do and can but depending if the software can

be expressed as a set of Specification Functions (provable)
∗ (RMC) As mentioned earlier, these techniques do not scale,

so they can only be useful within a tightly defined critical
software component. The dependency analysis tools may be
helpful to ensure that components verified by formal methods
are not invalidated by dependency relationships.

∗ (DTAES 6) Very expensive but the standard to aim for wrt
very high integrity software (think safety, security such as
with partition control of software defined radio).

– (Seed) Tools (e.g. DOORS) if so, which ones?
∗ (DTAES 6) Mandated by ADM(MAT) for technical require-

ments definition and traceability... but not well used or worst
misuse for contractual requirements management. Ouch!

DRDC Valcartier ECR 2007-097 43

Fourth Domain: Process Support ANNEX B RAW DATA

∗ (CAE) Every thing should be linked through DOORS (or
the equivalent). A requirement should be linked to its de-
sign specification, software/hardware implementation spec-
ifications, its test case description, the files (or package, or
functions) implementing it and testing it. One tool to find
and view the whole thing.
· (DTAES 6-4C1) Requirements traceability starts before

it s called up for in a specification back to the SOR,
CONOPS, STANAGs, civil TC CARs, FARs, AC, ICAO
SARPS, etc.

∗ (DTAES 6) The most important domain contractually but
the one recently badly done (botched) by our engineer and
pseudo-engineer at NDHQ. Bad start = bad result

• (Seed) SV Analysis / Functional specification artifacts

– (Seed) Models / Diagrams (e.g. UML package diagrams, DFD,
UI Mock-ups) if so, which types?

∗ (RMC) System level architecture design. This is important
especially from an ILS perspective.

∗ (CAE) Model-based requirements is a good artifact for SV
∗ (Seed) Text (e.g. Software Architecture Design, SARAD) if

so, which types?
∗ (Seed) Tools (e.g. UML case tools) if so, which ones?

· (RMC) integral schedulability analysis tools linked
tightly to the "live" product, and not some Prel Design
review report based upon an as yet realized design

• (Seed) SV Design Specification artifacts

– (Seed) Models / Diagrams (e.g. UML class diagrams, DB
schemas) if so, which types?

∗ (RMC) Sequence diagrams (with/without timing) to verify
inter-module behaviors

∗ (RMC) Hierarchical state machines (diagrams) to verify
properties of independent component behaviors

∗ (RMC) Inheritance trees to illustrate this special type of de-
pendency. Other diagrams such as state diagrams must sup-
port inherited views; i.e. what behavior is general/specific

– (Seed) Text (e.g. Software Detailed Design) if so, which types?
∗ (14 SES) Tech. Notes
∗ (14 SES) ICDs

· (RMC) A weak area of system engineering in general.
Are there modeling approaches to help solve this gap?
Has SysML addressed this need?

∗ (Seed) Tools (e.g. UML case tools) if so, which ones?
· (DTAES 6) Most use model-drive design... allowing eas-

ier design spec verification!

• (Seed) SV Implementation artifacts

– (Seed) Text (e.g. Unit test results, implementation guidelines) if
so, which types?
∗ (DTAES 6) We need guidelines, check list, and standardiza-

tion for contractual reasons.

– (Seed) Models / Diagrams (e.g. Files Implementation Directory)
if so, which types?
∗ (DTAES 6) This is where a good customer could use bene-

fits having such tools . There has been so many horror story
where implementers end up coding on the fly to make it work,
resulting in an improper design and tons of artifacts (see older
aircraft)

∗ (RMC) interoperable / interchangeable models must be man-
dated

– (Seed) Tools if so, which ones?
∗ (DTAES 6) Needed but little ideas in mind. bonne chance

Certified code-generators

DRDC Valcartier ECR 2007-097 44

Fourth Domain: Process Support ANNEX B RAW DATA

• (Seed) SV Traceability artifacts

– (Seed) Text (e.g. spreadsheets) if so, which types?
∗ (CAE) Traceability artifacts must be store in DB or in a

tool that support standard query languages. Text-based doc-
uments or spreadsheets are not suitable.

∗ (RMC) Configuration Management and Logistics Support
Analysis Record Databases contain most of this information
on the changes and tracking. The LSAR contains the relia-
bility and supportability information.
· (RMC) There is a wrong perception that ILS does not

impact software. (Integrated Logistic Support)
∗ (RMC) Requirements Verification Matrix are normally used

to track allocated requirements and the tests that are done to
close each paragraph of specifications.
· (RMC) In most projects the RVM and the CM database

as well as the LSAR are not linked through a common
repository, a big problem.

– (Seed) Tools (e.g. DOORS, Requisite PRO) if so, which ones?
∗ (DTAES 6) There is a push to use DOORS as Requisite Pro

is rather expensive (not just $ but with time, etc.)
∗ (CAE) The entire artifact should be linked to requirements

(or other) through DOORS. One tool to see everything re-
lated to a requirement.

– (RMC) Traceability documentation should also include proof of
compliance (POC) program

– (RMC) Traceability Justification Certificate

∗ (RMC) A term just invented today to reinforce the point that
in nearly all cases the money wasted on maintaining trace-
ability would be better spend on safety/reliability/... analysis
and assurance. In other words what are the very specific ob-
jectives of requiring traceability, and in each case we should
have to certifying up front that we realize that traceability
will not guarantee us anything more that every bad require-
ment has found its way into every aspect of the development,
and that every thing we forgot to specify, but which is critical,
is absent as decried.
· (RMC) Agreed, but not easily achieved. The answer lies

in making sure the dark side is well evaluated and that
the safety hazards are well tracked. These should be the
ones that should certainly be traced.

∗ (RMC) I prefer the term proof of compliance.
∗ (DSS) Validation (guides a verification)

• (Seed) Other

– (DTAES 6-6-2) Auto test case generators and script testing: all
input conditions, states, and outputs need to be logged in case we
need to repeat some testing to evaluate abnormal behaviors of the
software.

– (DTAES 6) Need to find a standard to inform the developer about
what the customer want. Also applies to Data Items Deliverables.

DRDC Valcartier ECR 2007-097 45

Problematic Areas ANNEX B RAW DATA

B.5 Problematic Areas

• (Seed) Identify problems

– (14 SES) Extracting an architecture from source code

– (RMC) Integrate Safety Analysis to Design
∗ (RMC) Safety mitigation and fault tolerance requirements

should be attached to code (module, capsule, ...)
∗ (DSS) Not only safety but also ideally every aspect of code

development. There should never be separate expression of
the same part (i.e. the documentation and the code), A system
should grow from the use cases that are defined to a testable
level and the system that is developed is immediately linked
to the use cases through model driven architecture. Finally
tests/built in test, models and the code are all different as-
pects of the system addressing a specific part/level and not
different representation of the system.

– (DTAES 6) Need a toolbox of approach to V&V our delivered
software product
∗ (DTAES 6-6-2) Regression testing: need tools to identify

what test cases to run to verify that the software has not re-
gressed after implementing a change.

∗ (DTAES 6-6-2) Test coverage: 1- need requirements-based
test coverage analysis tools that identify missed requirements
during the testing process; 2- need structural coverage analy-
sis tools that can identify what statements/conditions have not
been fully exercised during the testing process.

∗ (DTAES 6-6-2) Coupling analysis: need tools to check for
all the interdependencies among all software modules w.r.t.
data and control flow, in order to verify the existing level of
coupling among them so that the implementation of future
changes/new functionality does not become convoluted, hard
to implement/maintain and test.

– (DTAES 5-5) Visualize the lack of "robustness" test cases

– (DTAES 6) How to link up the requirements for safety and those
for security in our processes
∗ (DTAES 6) Development level
∗ (DTAES 6) Integration and testing
∗ (DTAES 6) V&V Levels
∗ (DTAES 6) When under its sustaining Engineering phase
∗ (DTAES 6) Need to find a way to bring forward the problems

encountered (create test cases, ..)

– (14 SES) A means of creating tests that are linked to a require-
ment completely contained in the SDE

– (DTAES 6) Can we automate our Verification and Validation
processes

– (RMC) The ever-growing disconnect between the software de-
velopment industry and the Air Force software community

– (DTAES 6) How and what can be standardized by the customer
(Government)?

– (WSM) lack of software development, test and V&V artifacts
from third party software developers

– (RMC) Lack of modeling for concurrency constraints

– (CAE) Need a low effort regression testing method that could
apply on a legacy code where functional tests are not available

• (Seed) Identify tasks or activities

– (RMC) Model concurrency constraints (mutual exclusion, prece-
dence, release times - earliest latest, completion times earliest lat-
est).

– (14 SES) Taking existing code and requirements developed a de-
tailed architecture document defining its behavior.
∗ (14 SES) Involves the ability to seamlessly transition be-

tween the requirements, the model and the code.

DRDC Valcartier ECR 2007-097 46

Problematic Areas ANNEX B RAW DATA

– (DTAES 5-5) Derive missing test cases from Structural Coverage
results (e.g. code not hit)

– (RMC) Create a scenario that represents a "typical" avionics soft-
ware development project

– (DTAES 6) Identify the processes to ensure that the impact of
Deviations and Waivers are properly assessed in term of impact
and of risks.

– (RMC) Link safety analysis

∗ (RMC) Perform safety analysis (FTA, FMECA, ETA,
SHA,...)

∗ (RMC) Derive hazard resolution
∗ (RMC) Take hazard resolution and modify create the design

for the right resolution
∗ (RMC) Create test case for each resolution

– (RMC) Create a complete mock-up of the avionics software
project as it could be developed with the latest in modeling nota-
tions / tools, make it available as a living artifact.

– (DTAES 5-5) Demonstrate/find compliance of parti-
tion/protection integrity (e.g. in support of ARINC 653)

• (Seed) Identify needs

– (DTAES 6) Need a suite of software given to our S/W Specialists
in projects and in WSM organizations in order to fulfill their man-
dates under the System Engineering construct of ADM(MAT) i.e.
M&AS.

– (DTAES 6) Need a suite of RT tools to address our requirements
in V&V?

– (RMC) Replaces on-going training, training that always lags the
reality of the state of the practice

– (WSM) need a more effective mechanism to capture end user re-
quirements (S/W Maintenance)

∗ (WSM) need to get end user sign-off on the implementation
earlier in the requirement/design process

– (14 SES) Need a SDE capable of managing requirements, design
and code for the maintenance of the CP-140 S/W

– (WSM) need to be inherently generating artifacts that will ad-
dress the airworthiness requirements

– (RMC) Need to integrate safety analysis tools with design tools
and tracking tools

– (DTAES 6) New Edgewater RTEdge development Environment:
∗ (DTAES 6) I need a BETA site to this and challenge it.
∗ (DTAES 6) Need to work on a cooperative program with

TTCP: Help required
∗ (DTAES 6) Need to address a few real case problems in con-

text of the SoS problems.

– (RMC) Integrate concurrency model with design tool

– (DTAES 5-5) Need incremental formal verification system
baselining approach so that everything is not left to the end and
bad news unmanageable.

– (DTAES 5-5) Need to be able to exhaustively bind (circonvene)
functionality to code to support required due diligence verifica-
tion (airworthiness). At the moment, this is considered a task
than cannot be done completely and exhaustively.

• (Seed) Describe traceability from problems to tasks, to needs

– (RMC) Safety
∗ (RMC) Problem #2 Tasks #6 Needs #7

– (DTAES 6) We get operational needs in of capability deficien-
cies, than with Modeling and simulation tools (which we have
little), we translate this in term of technical & functional require-
ments (many being derived): than it is given to our contractors
for implementation. I need such a tool, such as process, and its
trace across.+

DRDC Valcartier ECR 2007-097 47

Problematic Areas ANNEX B RAW DATA

– (DTAES 6) Link those tech requirements all the way down to the
actual product H/W & S/W: How? Need a family of tools

– (14 SES) The need to extract architecture: Problem 1, Task
2,Need 5

– (RMC) Problem 8 (knowledge-lag) links to tasks 4 (scenario) &

7 (mock-up), and Need:3 (replaces training)

– (RMC) Concurrency

∗ (RMC) Problem #11 tasks 1 and needs 9

– (Seed) Other

DRDC Valcartier ECR 2007-097 48

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor’s report, or tasking agency, are entered in section 8.)

Defence R & D Canada – Valcartier
2459 Pie-XI Blvd North, Qubec, QC, Canada

2. SECURITY CLASSIFICATION
(overall security classification of the document
including special warning terms if applicable).

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C,R or U) in parentheses after the title).

Getting smarter at managing avionic software: The results of a two-day requirements elicitation workshop
with DTAES

4. AUTHORS
(Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)

Salois, P. Charland D. Dessureault G. Dussault M. Lizotte F. Michaud D. Ouellet M.

5. DATE OF PUBLICATION (month and year of publication of document)

October 2007

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc).

56

6b. NO. OF REFS (total cited in
document)

22

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).

External Client Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include address).

DTAES 6
National Defense Headquarters – 101 Colonel By Drive, Ottawa, K1A 0K2

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research and
development project or grant number under which the document was
written. Specify whether project or grant).

15AV40

9b. CONTRACT NO. (if appropriate, the applicable number under which
the document was written).

10a. ORIGINATOR’S DOCUMENT NUMBER (the official document number
by which the document is identified by the originating activity. This
number must be unique.)

DRDC Valcartier ECR 2007-097

10b. OTHER DOCUMENT NOs. (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to the Document
Availability (11). However, where further distribution beyond the audience specified in (11) is possible, a wider announcement audience may be
selected).

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the
abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the
information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in
both official languages unless the text is bilingual).

Managing avionic software effectively is a challenge with today’s tools and resources. The DTAES has recog-
nized this and has approached DRDC Valcartier to address the problem from a technological standpoint. The
team at DRDC Valcartier has considerable expertise in software engineering but, unfortunately at this point,
very little in avionics. To offset this, a series of measures have been undertaken to ramp up this expertise
(e.g. training, production of state-of-the-art reports).
The first of these measures was the organization of a two-day workshop with DTAES and its partners to
better define their requirements in avionic software management. This document highlights the results of
this workshop, held in December 2006. The workshop used the DSS collaborative laboratory, located at the
National Defence Headquarters in Ottawa. This laboratory is built on the MeetingWorks toolset to provide
each of the 11 participants with his own computer on which to give feedback on the four pre-identified domains
(extraction, analysis, visualization, process support). From the outputs of these domains, the main tasks or
problematic areas were identified and prioritized. These will be further investigated later, which could lead to
relevant research projects and new engineering efforts within DRDC.
Since DRDC Valcartier is a neophyte in this area, this document will not be an all-encompassing list of all
avionic software engineering problems. It rather provides a summary of the most important requirements
identified at the workshop. As DRDC Valcartier is currently negotiating with DTAES to improve various other
aspects related to the air platforms, the document also provides an opportunity to spotlight potential openings
for future collaboration to improve the whole avionic engineering process.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in
cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade
name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus. e.g.
Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the
classification of each should be indicated as with the title).

Directorate of Technical Airworthiness and Engineering Support (DTAES), air force, avionics, software, re-
quirements

Canada’s Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

WWW.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

	Acknowledgements
	Abstract
	Résumé
	Executive Summary
	Sommaire
	Table of Contents
	1 Introduction
	2 How to Read and Navigate this Report
	3 First Domain: Extraction
	4 Second Domain: Analysis
	5 Third Domain: Visualization
	6 Fourth Domain: Process Support
	7 Problematic Areas
	8 Conclusion
	References
	List of Acronyms
	A List of Participants
	B Raw Data
	B.1 First domain: Extraction
	B.2 Second Domain: Analysis
	B.3 Third Domain: Visualization
	B.4 Fourth Domain: Process Support
	B.5 Problematic Areas

	DTAESWorkshop2006.pdf
	Acknowledgements
	Abstract
	Résumé
	Executive Summary
	Sommaire
	Table of Contents
	1 Introduction
	2 How to Read and Navigate this Report
	3 First Domain: Extraction
	4 Second Domain: Analysis
	5 Third Domain: Visualization
	6 Fourth Domain: Process Support
	7 Problematic Areas
	8 Conclusion
	References
	List of Acronyms
	A List of Participants
	B Raw Data
	B.1 First domain: Extraction
	B.2 Second Domain: Analysis
	B.3 Third Domain: Visualization
	B.4 Fourth Domain: Process Support
	B.5 Problematic Areas

